当前位置: 首页 > news >正文

成都网站关键排名北京seo报价

成都网站关键排名,北京seo报价,西安大唐不夜城旅游攻略,做网站v1认证是什么意思【Pytorch】学习记录分享5——PyTorch经典网络 ResNet 1. ResNet (残差网络)基础知识2. 感受野3. 手写体数字识别3. 0 数据集(训练与测试集)3. 1 数据加载3. 2 函数实现:3. 3 训练及其测试: 1. ResNet &…

【Pytorch】学习记录分享5——PyTorch经典网络 ResNet

      • 1. ResNet (残差网络)基础知识
      • 2. 感受野
      • 3. 手写体数字识别
        • 3. 0 数据集(训练与测试集)
        • 3. 1 数据加载
        • 3. 2 函数实现:
        • 3. 3 训练及其测试:

1. ResNet (残差网络)基础知识

图1 56层error比20层error高,提出ResNet (残差网络)的方案
在这里插入图片描述

网络效果:

在这里插入图片描述
网络结构:
在这里插入图片描述
在这里插入图片描述

2. 感受野

在这里插入图片描述
在这里插入图片描述

3. 手写体数字识别

3. 0 数据集(训练与测试集)

mnist 用于手写体训练与测试,这里包含完整的链接

3. 1 数据加载
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets,transforms 
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
### 首先读取数据
# - 分别构建训练集和测试集(验证集)
# - DataLoader来迭代取数据# 定义超参数 
input_size = 28  #图像的总尺寸28*28
num_classes = 10  #标签的种类数
num_epochs = 3  #训练的总循环周期
batch_size = 64  #一个撮(批次)的大小,64张图片# 训练集
train_dataset = datasets.MNIST(root='./data',  train=True,   transform=transforms.ToTensor(),  download=True) # 测试集
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())# 构建batch数据
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

在这里插入图片描述

3. 2 函数实现:
# 卷积网络模块构建
# 一般卷积层,relu层,池化层可以写成一个套餐
# 注意卷积最后结果还是一个特征图,需要把图转换成向量才能做分类或者回归任务class CNN(nn.Module):def __init__(self):super(CNN, self).__init__()self.conv1 = nn.Sequential(         # 输入大小 (1, 28, 28)nn.Conv2d(in_channels=1,              # 灰度图out_channels=16,            # 要得到几多少个特征图kernel_size=5,              # 卷积核大小stride=1,                   # 步长padding=2,                  # 如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1),                              # 输出的特征图为 (16, 28, 28)nn.ReLU(),                      # relu层nn.MaxPool2d(kernel_size=2),    # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14))self.conv2 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)nn.Conv2d(16, 32, 5, 1, 2),     # 输出 (32, 14, 14)nn.ReLU(),                      # relu层nn.MaxPool2d(2),                # 输出 (32, 7, 7))self.out = nn.Linear(32 * 7 * 7, 10)   # 全连接层得到的结果def forward(self, x):x = self.conv1(x)x = self.conv2(x)x = x.view(x.size(0), -1)           # flatten操作,结果为:(batch_size, 32 * 7 * 7)  output = self.out(x)return output# 准确率作为评估标准
def accuracy(predictions, labels):pred = torch.max(predictions.data, 1)[1] rights = pred.eq(labels.data.view_as(pred)).sum() return rights, len(labels) 
3. 3 训练及其测试:
# 训练网络模型
# 实例化
net = CNN() 
#损失函数
criterion = nn.CrossEntropyLoss() 
#优化器
optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法#开始训练循环
for epoch in range(num_epochs):#当前epoch的结果保存下来train_rights = []for batch_idx, (data, target) in enumerate(train_loader):  #针对容器中的每一个批进行循环net.train()  # 将模型设置为训练模式output = net(data)  # 使用模型进行前向传播loss = criterion(output, target)  # 计算损失optimizer.zero_grad()  # 梯度清零loss.backward()  # 反向传播计算梯度optimizer.step()  # 更新参数right = accuracy(output, target)  # 计算当前批次的准确率train_rights.append(right)  # 将准确率保存起来if batch_idx % 500 == 0:  # 每500个批次进行一次验证net.eval()  # 将模型设置为评估模式val_rights = []  # 存储验证集的准确率for (data, target) in test_loader:  # 在测试集上进行验证output = net(data)  # 使用模型进行前向传播right = accuracy(output, target)  # 计算验证集上的准确率val_rights.append(right)  # 将准确率保存起来#准确率计算train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))  # 计算训练集准确率的分子和分母val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))  # 计算验证集准确率的分子和分母print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(epoch, batch_idx * batch_size, len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.data, 100. * train_r[0].numpy() / train_r[1],100. * val_r[0].numpy() / val_r[1]))  # 打印当前进度和准确率信息

在这里插入图片描述

http://www.tj-hxxt.cn/news/31967.html

相关文章:

  • 做网站推广费用如何优化网站
  • 软件开发和网站建设哪个好天津seo公司
  • 专业餐饮vi设计公司seo营销推广平台
  • 邢台seo一站式长沙网络营销咨询费用
  • 网站设计与网页配色实例精讲厦门seo推广公司
  • 网站怎么加入百度网盟免费推广方式有哪些
  • 网站后台费用外媒头条最新消息
  • 天眼查企业查询在线官网优化网站seo公司
  • 帮别人设计网站电子商务网站
  • 建筑工程公司注册要求seo基础培训教程
  • 怎么做同学录的网站2345网址导航电脑版官网
  • 各省网站备案时长网络营销顾问工作内容
  • 网页游戏网络游戏优化网站排名解析推广
  • ps做网站导航百度推广售后
  • 营销推广工作内容seo是什么的简称
  • 郑州艾特网站建设专业培训大全
  • wordpress建站流量网络营销有哪几种方式
  • 苏州企业网站建设设计推广app赚佣金平台
  • 响应式 网站建设湖南企业网站建设
  • 哪个nas可以做网站上海十大公关公司排名
  • 网站后台图片并排怎么做互联网推广怎么做
  • 小程序开发公司网站源码下载怎么做一个公司网站
  • 网站建设服务标语网站怎么搭建
  • 做的比较好的意大利网站企业软文范例
  • 帝国cms搭建个人网站杭州网站推广找哪家
  • 遂宁公司做网站湖南seo服务
  • 政府网站必须做等保友链通
  • 怎样做软件网站建设镇江网站建设推广
  • wordpress下载链接 插件北京排名seo
  • 哪个网站收录排名好怎么做个网站