当前位置: 首页 > news >正文

营销推广方法中国seo第一人

营销推广方法,中国seo第一人,上海门户网站制作公司,北京给网站做系统的公司系列文章目录 CasADi - 最优控制开源 Python/MATLAB 库 文章目录 系列文章目录前言一、机器人硬件对比1.1 Teensy 上的微控制器基准测试1.2 机器人硬件1.3 BibTeX 二、求解器三、功能(预期)3.1 高效3.2 鲁棒3.3 可嵌入式3.4 最小依赖性3.5 高效热启动3.…

系列文章目录

CasADi - 最优控制开源 Python/MATLAB 库


文章目录

  • 系列文章目录
  • 前言
  • 一、机器人硬件对比
    • 1.1 Teensy 上的微控制器基准测试
    • 1.2 机器人硬件
    • 1.3 BibTeX
  • 二、求解器
  • 三、功能(预期)
    • 3.1 高效
    • 3.2 鲁棒
    • 3.3 可嵌入式
    • 3.4 最小依赖性
    • 3.5 高效热启动
    • 3.6 接口
  • 四、在 Ubuntu 安装
    • 4.1 在终端克隆此 repo
    • 4.2 导航至根目录并运行
    • 4.3 执行 CMake 配置步骤
    • 4.4 构建 TinyMPC
  • 五、示例
    • 5.1 运行四旋翼飞行器悬停示例
    • 5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作


前言

TinyMPC: 资源受限微控制器上的模型预测控制

作者:Anoushka Alavilli*, Khai Nguyen*, Sam Schoedel*, Brian Plancher, Zachary Manchester

Carnegie Mellon University, Barnard College


模型预测控制(Model-predictive control,MPC)是控制受复杂约束条件(complex constraints)影响的高动态机器人系统(highly dynamic robotic systems)的有力工具。然而,MPC 的计算要求很高,在资源有限的小型机器人平台上实施往往不切实际。我们推出的 TinyMPC 是一种高速 MPC 求解器,内存占用少,适用于小型机器人上常见的微控制器。我们的方法基于交替方向乘子法(ADMM),并利用 MPC 问题的结构来提高效率。我们以最先进的求解器 OSQP 为基准,对 TinyMPC 进行了演示,速度提高了近一个数量级,同时还在一个重达 27 克的四旋翼机器人上进行了硬件实验,演示了高速轨迹跟踪(high-speed trajectory tracking)和动态避障(dynamic obstacle avoidance)。

一、机器人硬件对比

在这里插入图片描述

在这里插入图片描述

1.1 Teensy 上的微控制器基准测试

在这里插入图片描述

1.2 机器人硬件

在这里插入图片描述

1.3 BibTeX

@misc{tinympc,title={TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers}, author={Anoushka Alavilli and Khai Nguyen and Sam Schoedel and Brian Plancher and Zachary Manchester},year={2023},eprint={2310.16985},archivePrefix={arXiv},primaryClass={cs.RO}
}

二、求解器

TinyMPC 求解器是一个数值优化软件包,用于求解默认形式的凸二次规划型模型预测控制(convex quadratic model-predictive control)
minimize: ⁡ 1 2 ( x N − x ˉ N ) T Q f ( x N − x ˉ N ) + ∑ k = 0 N ( 1 2 ( x k − x ˉ k ) T Q ( x k − x ˉ k ) + 1 2 ( u k − u ˉ k ) T R ( u k − u ˉ k ) ) subject  to: ⁡ x k + 1 = A x k + B u k u ‾ ≤ u k ≤ u ‾ x ‾ ≤ x k ≤ x ‾ \begin{array}{l l}{\operatorname*{minimize:}}&{\dfrac{1}{2}(x_{N}-\bar{x}_{N})^{T}Q_{f}(x_{N}-\bar{x}_{N})+{{\sum_{k=0}^{N}\bigl(\frac{1}{2}(x_{k}-\bar{x}_{k})^{T}Q(x_{k}-\bar{x}_{k})+\frac{1}{2}\bigl(u_{k}-\bar{u}_{k}\bigr)^{T}R(u_{k}-\bar{u}_{k})\bigr)}}} \\ {\operatorname*{subject\;to:}}&x_{k+1}=A x_{k}+B u_{k} \\ & \overline{{{u}}}\,\leq\,u_{k}\,\leq\underline{{u}} \\ & \overline{{{x}}}\,\leq\,x_{k}\,\leq\underline{{x}} \end{array} minimize:subjectto:21(xNxˉN)TQf(xNxˉN)+k=0N(21(xkxˉk)TQ(xkxˉk)+21(ukuˉk)TR(ukuˉk))xk+1=Axk+Bukuukuxxkx

其中, x k ∈ R n x_{k}\in\mathbb{R}^{n} xkRn u k ∈ R m u_{k}\in\mathbb{R}^{m} ukRm 分别为时间步长为 k 时的状态和控制输入,N 为时间步长(也称为视平线), A ∈ R n × n A\in\mathbb{R}^{n\times n} ARn×n B ∈ R n × m B\in\mathbb{R}^{n\times m} BRn×m 定义了系统动力学, Q ≥ 0 Q\geq0 Q0 R ≻ 0 R\succ0 R0 Q f ≥ 0 Q_{f}\geq0 Qf0 为对称成本权重矩阵, x ~ k {\tilde{x}}_{k} x~k u ˉ k {\bar{u}}_{k} uˉk 是状态和输入参考轨迹。

三、功能(预期)

3.1 高效

它采用基于 ADMM 的定制一阶方法,无需矩阵因式分解。所有其他操作都非常简单。它还利用 MPC 问题中的结构,为基元更新实现了黎卡提递归(Riccati recursion)。

3.2 鲁棒

该算法完全 free,而且不需要对问题数据做任何假设(问题只需要是凸的)。它就是这么简单!

3.3 可嵌入式

它有一个简单的接口,无需内存管理器即可生成定制的可嵌入 C 代码。

3.4 最小依赖性

它只需要 Eigen 就能运行。

3.5 高效热启动

它可以轻松热启动,并且可以缓存矩阵因式分解,从而极其高效地解决参数化问题。

3.6 接口

它为 C、C++、Julia、Matlab 和 Python 提供了接口。

四、在 Ubuntu 安装

4.1 在终端克隆此 repo

git clone git@github.com:TinyMPC/TinyMPC.git

4.2 导航至根目录并运行

cd TinyMPC
mkdir build && cd build

4.3 执行 CMake 配置步骤

cmake ../

4.4 构建 TinyMPC

make 

五、示例

5.1 运行四旋翼飞行器悬停示例

./examples/example_quadrotor_hovering
tracking error at step  0: 2.2472
tracking error at step  1: 2.9549
tracking error at step  2: 2.5478
tracking error at step  3: 2.6331
tracking error at step  4: 3.1375
tracking error at step  5: 3.6413
tracking error at step  6: 4.0214
tracking error at step  7: 4.2898
tracking error at step  8: 4.5070
tracking error at step  9: 4.6282
tracking error at step 10: 4.3689
tracking error at step 11: 3.8895
tracking error at step 12: 3.3699
tracking error at step 13: 2.8681
tracking error at step 14: 2.3877
tracking error at step 15: 1.9336
tracking error at step 16: 1.5516
tracking error at step 17: 1.2588
tracking error at step 18: 1.0420
tracking error at step 19: 0.8844
tracking error at step 20: 0.7680
tracking error at step 21: 0.6773
tracking error at step 22: 0.6009
tracking error at step 23: 0.5316
tracking error at step 24: 0.4658
tracking error at step 25: 0.4024
tracking error at step 26: 0.3416
tracking error at step 27: 0.2839
tracking error at step 28: 0.2305
tracking error at step 29: 0.1822
tracking error at step 30: 0.1393
tracking error at step 31: 0.1023
tracking error at step 32: 0.0715
tracking error at step 33: 0.0472
tracking error at step 34: 0.0301
tracking error at step 35: 0.0217
tracking error at step 36: 0.0218
tracking error at step 37: 0.0251
tracking error at step 38: 0.0279
tracking error at step 39: 0.0291
tracking error at step 40: 0.0290
tracking error at step 41: 0.0277
tracking error at step 42: 0.0254
tracking error at step 43: 0.0227
tracking error at step 44: 0.0197
tracking error at step 45: 0.0167
tracking error at step 46: 0.0140
tracking error at step 47: 0.0116
tracking error at step 48: 0.0097
tracking error at step 49: 0.0082
tracking error at step 50: 0.0072
tracking error at step 51: 0.0067
tracking error at step 52: 0.0065
tracking error at step 53: 0.0065
tracking error at step 54: 0.0065
tracking error at step 55: 0.0064
tracking error at step 56: 0.0063
tracking error at step 57: 0.0062
tracking error at step 58: 0.0061
tracking error at step 59: 0.0059
tracking error at step 60: 0.0058
tracking error at step 61: 0.0056
tracking error at step 62: 0.0055
tracking error at step 63: 0.0054
tracking error at step 64: 0.0053
tracking error at step 65: 0.0052
tracking error at step 66: 0.0052
tracking error at step 67: 0.0052
tracking error at step 68: 0.0052
tracking error at step 69: 0.0052

5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作

./examples/example_codegen
A = [1, 1]
[5, 2]
B = [3, 4]
[3, 1]
Q = [1.1,   0]
[  0, 1.1]
R = [2.1,   0]
[  0, 2.1]
rho = 0.1
Kinf converged after 5 iterations
Precomputing finished
Kinf = [   1.36,  0.5335]
[-0.6323, -0.1066]
Pinf = [8.899, 2.664]
[2.664, 2.046]
Quu_inv = [  0.1076, -0.09799]
[-0.09799,  0.09522]
AmBKt = [-0.5502,   1.553]
[-0.1739,  0.5062]
coeff_d2p = [7.438e-06, 8.381e-06]
[2.127e-06, 2.398e-06]
Creating generated code directory at /home/khai/SSD/Code/TinyMPC/generated_code
ERROR OPENING DATA WORKSPACE FILE
Segmentation fault
http://www.tj-hxxt.cn/news/30501.html

相关文章:

  • 动画制作专业学校排名aso关键词优化工具
  • 火鸟门户系统seo排名优化首页
  • 网站 做 app开发工具网店seo名词解释
  • 成品网站建设咨询在线之家
  • 打开网站的语音播报怎么做app推广注册放单平台
  • 天津 网站建设今天刚刚发生的新闻台湾新闻
  • 安阳县高级中学厦门seo关键词排名
  • 基于wap的企业网站设计与实现网络广告文案范文
  • 个人备案可以建企业网站吗重庆网站建设维护
  • 网站建设行业赚钱么seo泛目录培训
  • 合肥商城网站建设北京官方seo搜索引擎优化推荐
  • 出版社网站建设平台推广引流
  • p2p网站开发思路方案做运营的具体做什么
  • 品牌建设对企业发展的重要性木卢seo教程
  • wordpress操作卡卡的系统优化app最新版
  • 苏州网站建设哪家公司好百度快照客服
  • 怎么不能安装wordpress关键词seo优化排名公司
  • 网站如何做百度权重企业网站seo案例
  • 做网站应该会什么seo文章代写一篇多少钱
  • 商业网站制作价格营销型网站内容
  • 网站页面多大seo搜索引擎的优化
  • 怎么让织梦网站适合手机nba赛季排名
  • 内部网站建设公司重庆seo推广运营
  • 个人博客网站需要备案吗百度指数查询
  • 做网站襄樊重庆seo论坛
  • 浙江手机版建站系统开发河北seo技术培训
  • 军民融合网站建设服务网站推广方案
  • 公司网站建设款计什么科目seo优化关键词0
  • 建设网站的网站是什么seo刷关键词排名工具
  • 商业网站制作教程湖南关键词优化排名推广