当前位置: 首页 > news >正文

广安哪里做网站培训学校资质办理条件

广安哪里做网站,培训学校资质办理条件,网页与网站设计,css做的简单网站一、方法详解 首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。 有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。 PyTorch torch.stack() method joins (concaten…

一、方法详解

首先,看一下stack的直观解释,动词可以简单理解为:把……放成一堆、把……放成一摞。
在这里插入图片描述
有了对stack方法的直观感受,接下来,我们正式解析torch.stack方法。

PyTorch torch.stack() method joins (concatenates) a sequence of tensors (two or more tensors) along a new dimension. It inserts new dimension and concatenates the tensors along that dimension. This method joins the tensors with the same dimensions and shape. We could also use torch.cat() to join tensors But here we discuss the torch.stack() method.

torch.stack方法用于沿着一个新的维度 join(也可称为cat)一系列的张量(可以是2个张量或者是更多),它会插入一个新的维度,并让张量按照这个新的维度进行张量的cat操作。值得注意的是:张量序列中的张量必须要有相同的shape和dimension。

在这里插入图片描述

Parameters
tensors:张量序列,也就是要进行stack操作的对象,可以有很多个张量。
dim:按照dim的方式对这些张量进行stack操作,也就是你要按照哪种堆叠方式对张量进行堆叠。dim的取值范围为闭区间[0,输入Tensor的维数]
return
堆叠后的张量

只通过理论对方法进行解释说明是不够直观的,下面会通过大量的示例对torch.stack方法进行解析!

二、案例解析

2.1 案例1:2个一维tensor进行stack操作

  • 程序
 x = t.tensor([1,2,3,4])y = t.tensor([5,6,7,8])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)
  • 运行结果
torch.Size([4])
torch.Size([4])tensor([[1, 2, 3, 4],[5, 6, 7, 8]])
torch.Size([2, 4])tensor([[1, 5],[2, 6],[3, 7],[4, 8]])
torch.Size([4, 2])
  • 图解
    在这里插入图片描述

2.2 案例2:2个二维tensor进行stack操作

  • 程序
 x = t.tensor([[1,2,3],[4,5,6]])y = t.tensor([[7,8,9],[10,11,12]])print(x.shape)print(y.shape)z1 = t.stack((x,y), dim=0)print(z1)print(z1.shape)z2 = t.stack((x,y), dim=1)print(z2)print(z2.shape)z3 = t.stack((x,y), dim=2)print(z3)print(z3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]])
torch.Size([2, 2, 3])tensor([[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]])
torch.Size([2, 3, 2])
  • 图解
    在这里插入图片描述

2.3 案例3:多个二维tensor进行stack操作

  • 程序
x = torch.tensor([[1,2,3],[4,5,6]])
y = torch.tensor([[7,8,9],[10,11,12]])
z = torch.tensor([[13,14,15],[16,17,18]])
print(x.shape)
print(y.shape)
print(z.shape)r1 = torch.stack((x,y,z),dim=0)
print(r1)
print(r1.shape)r2 = torch.stack((x,y,z),dim=1)
print(r2)
print(r2.shape)r3 = torch.stack((x,y,z),dim=2)
print(r3)
print(r3.shape)
  • 运行结果
torch.Size([2, 3])
torch.Size([2, 3])
torch.Size([2, 3])tensor([[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]],[[13, 14, 15],[16, 17, 18]]])
torch.Size([3, 2, 3])tensor([[[ 1,  2,  3],[ 7,  8,  9],[13, 14, 15]],[[ 4,  5,  6],[10, 11, 12],[16, 17, 18]]])
torch.Size([2, 3, 3])tensor([[[ 1,  7, 13],[ 2,  8, 14],[ 3,  9, 15]],[[ 4, 10, 16],[ 5, 11, 17],[ 6, 12, 18]]])
torch.Size([2, 3, 3])
  • 图解

2.4 案例4:2个三维tensor进行stack操作

  • 程序
x = torch.tensor([[[1,2,3],[4,5,6]],[[2,3,4],[5,6,7]]])
y = torch.tensor([[[7,8,9],[10,11,12]],[[8,9,10],[11,12,13]]])
print(x.shape)
print(y.shape)
z1 = torch.stack((x,y),dim=0)
print(z1)
print(z1.shape)
z2 = torch.stack((x,y),dim=1)
print(z2)
print(z2.shape)
z3 = torch.stack((x,y),dim=2)
print(z3)
print(z3.shape)
z4 = torch.stack((x,y),dim=3)
print(z4)
print(z4.shape)
  • 运行结果
torch.Size([2, 2, 3])
torch.Size([2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 2,  3,  4],[ 5,  6,  7]]],[[[ 7,  8,  9],[10, 11, 12]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 4,  5,  6]],[[ 7,  8,  9],[10, 11, 12]]],[[[ 2,  3,  4],[ 5,  6,  7]],[[ 8,  9, 10],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  2,  3],[ 7,  8,  9]],[[ 4,  5,  6],[10, 11, 12]]],[[[ 2,  3,  4],[ 8,  9, 10]],[[ 5,  6,  7],[11, 12, 13]]]])
torch.Size([2, 2, 2, 3])tensor([[[[ 1,  7],[ 2,  8],[ 3,  9]],[[ 4, 10],[ 5, 11],[ 6, 12]]],[[[ 2,  8],[ 3,  9],[ 4, 10]],[[ 5, 11],[ 6, 12],[ 7, 13]]]])
torch.Size([2, 2, 3, 2])
  • 图解

参考文献

[1]https://blog.csdn.net/flyingluohaipeng/article/details/125034358
[2]https://www.geeksforgeeks.org/python-pytorch-stack-method/
[3]https://www.bing.com/search?q=torch.stack&form=ANNTH1&refig=653766bda2d540398dfb83d482cd33cd

http://www.tj-hxxt.cn/news/28621.html

相关文章:

  • 网站建设经验王者荣耀恺和优化关键词排名外包
  • 广州十度网络网站开发最好免费建站哪个比较好
  • 杭州哪里做网站好西安建站推广
  • 网站建设是永久使用吗做seo前景怎么样
  • 本地网站源码营销型网站名词解释
  • 泉州学校网站开发手机网站
  • 简单的网站设计多少钱360指数查询工具
  • 武汉网站上线推广东莞网络优化哪家好
  • 搭建外文网站40个免费网站推广平台
  • 做外销网站企业营销策划
  • 大数据营销经典案例seo网络营销招聘
  • 企业建设网站的步骤是什么互联网营销怎么赚钱
  • 做建筑设计网站百度搜索关键词查询
  • 怎么做可以把网站图片保存下来seo诊断
  • 河北做wap网站宁波网络营销推广公司
  • 动漫制作专业属于什么大类码迷seo
  • 阿里巴巴网站广告怎么做网络营销成功案例有哪些
  • 木门网站模板域名关键词查询
  • 开源的网站管理系统济南网站建设哪家好
  • 上海旅游网站建设情况优化推广网站排名
  • 织梦网站安装视频教程软文标题
  • 做网站枣庄北京网络营销招聘
  • 嘉善网站建设jswebsseo薪酬如何
  • 聊城市网站建设公司怎么做网站
  • 做外贸零售和批发批发网站百度电话销售
  • 唐县做网站推广的公司
  • 四川住房和城乡建设九大员网站google浏览器官方
  • 手机网站开发专业seo软件代理
  • 成都便宜网站建设媒体发布平台
  • 行业网站开发方案网站seo站长工具