当前位置: 首页 > news >正文

亳州是网站建设seo关键词推广

亳州是网站建设,seo关键词推广,美国外贸网站,工作网站建设中布线费用账务处理背包问题 01背包指的是物品只有1个,可以选也可以不选。完全背包是物品有无数个,可以选几个也可以不选。 二维数组01背包 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次&…

背包问题

  1. 01背包指的是物品只有1个,可以选也可以不选。
  2. 完全背包是物品有无数个,可以选几个也可以不选。

二维数组01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

输入: 
weight: [1,3,4],value: [15,20,30],背包体积: 4
输出:35

解题思路

  1. dp数组,从下标[0-i]的物品里面任意取,放进容量为j的背包,价值总和最大是多少。
  2. 不放物品i,物品i由于体积问题放不进去,dp[i][j]=dp[i-1][j]
  3. 放物品i,dp[i][j]=dp[i-1][j-weight[i]]+value[i]

Java实现

public class BagProblem {public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagSize = 4;System.out.println(new BagProblem().testWeightBagProblem(weight, value, bagSize));}public int testWeightBagProblem(int[] weight, int[] value, int bagSize) {int size = weight.length;//0-size-1个物品放入到大小为bagSize的背包中int[][] dp = new int[size][bagSize + 1];//当bagSize=0时,dp[i][0]=0//当只有索引为0的物品可以选择,且放的下(j<=bagSize),dp[0][j]的值等于放入索引为0的价值for (int j = weight[0]; j <= bagSize; j++) {dp[0][j] = value[0];}for (int i = 1; i < size; i++) {for (int j = 1; j <= bagSize; j++) {if (j < weight[i]) {/*** 当前背包的容量都没有当前物品i大的时候,是不放物品i的* 那么前i-1个物品能放下的最大价值就是当前情况的最大价值*/dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);}}}for (int i = 0; i < size; i++) {for (int j = 0; j <= bagSize; j++) {System.out.print(dp[i][j] + "\t");}System.out.println("\n");}return dp[size - 1][bagSize];}
}

一维数组01背包

解题思路

  1. dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
  2. 递推公式:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
  3. 遍历详解:当i=0,初始化dp[j],只有j>weight[i]的时候,会被初始化。当i=1的时候,可以选择的商品有[0,1],dp[j]是在原有的dp数组上判断的,只有当可以存放下索引为1的商品,且dp[j - weight[i]] + value[i]>dp[j],该数值才会被更新。
  4. 选择逆序背包容量,主要是dp[j]和dp[j-weight[i]]的初始化顺序的问题。在二维数组中,比较的是dp[i-1][j-weight[i]],是第i-1层的dp[j-weight[i]]

Java实现

public class BagProblem_II {public static void main(String[] args) {int[] weight = {1, 3, 4};int[] value = {15, 20, 30};int bagWight = 4;System.out.println(new BagProblem_II().testWeightBagProblem(weight, value, bagWight));}private int testWeightBagProblem(int[] weight, int[] value, int bagWeight) {int wLen = weight.length;//定义dp数组:dp[j]表示背包容量为j时,能获得的最大价值int[] dp = new int[bagWeight + 1];//遍历顺序:先遍历物品,再遍历背包容量for (int i = 0; i < wLen; i++) {for (int j = bagWeight; j >= weight[i]; j--) {dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);System.out.println(dp[j] + "," + j + "," + i);}}//打印dp数组for (int j = 0; j <= bagWeight; j++) {System.out.print(dp[j] + " ");}System.out.println();return dp[bagWeight];}
}

416. 分割等和子集

力扣题目链接

给你一个 只包含正整数非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

输入:nums = [1,5,11,5]
输出:true
解释:数组可以分割成 [1, 5, 5] 和 [11] 。

解题思路

  1. 集合里能否出现总和为 sum / 2 的子集
  2. dp[j]:最大值为j的子集
  3. 如果第i个元素没有放到集合中,值是dp[i-1][j];如果第i个元素放进集合中,值是dp[i-1][j-num[i]]+num[i]
dp[i][j]= dp[i−1][j],当i-1的数组已经满足了等于j的条件
dp[i][j]= true, 当nums[i] = j满足。
dp[i−1][j−nums[i]].当nums[i] < j。
dp[i][j]为true的三个条件,只需要满足一个即可。

Java实现

    public boolean canPartition(int[] nums) {if (nums == null || nums.length == 0) return false;int len = nums.length;int sum = 0;for (int i = 0; i < nums.length; i++) {sum += nums[i];}if (sum % 2 != 0) {return false;}int target = sum / 2;int[] dp = new int[target + 1];for (int i = 0; i < len; i++) {for (int j = target; j >= nums[i]; j--) {dp[j] = Math.max(dp[j], dp[j - nums[i]] + nums[i]);}}return dp[target] == target;}

1049.最后一块石头的重量II

力扣题目链接

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

解题思路

  1. dp[target]里是容量为target的背包所能背的最大重量。分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

Java实现

class Solution_LC1049 {public int lastStoneWeightII(int[] stones) {int sum = 0;for (int i : stones) {sum += i;}int target = sum >> 1;//初始化dp数组int[] dp = new int[target + 1];for (int i = 0; i < stones.length; i++) {//采用倒序for (int j = target; j >= stones[i]; j--) {//两种情况,要么放,要么不放dp[j] = Math.max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - 2 * dp[target];}
}

494.目标和

力扣题目链接

给你一个整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

解题思路

  1. 数组集合可以分为正数集合和负数集合,正+负=sum,正-负=target,题目可以转化为求sum=正数的子集合的个数。
  2. 纯01背包问题:装满背包最大的价值是多少;分割等和子集,能不能装满这个背包;最后一块石头的重量,给定背包,能装多少装多少;目标和:装满这个背包有多少方法?
  3. dp数组的含义:填满j(包括j)这么大容积的包,有dp[j]种方法。
  4. dp[j]=dp[j-nums[i]]的累加。比如nums[i]=2,dp[5]+=dp[5-nums[i]]。

Java实现

class Solution_LC494 {public int findTargetSumWays(int[] nums, int target) {int len = nums.length;int sum = 0;for (int i = 0; i < len; i++) {sum += nums[i];}if (target > sum || target < -sum) {return 0;}if ((target + sum) % 2 != 0) {return 0;}int goal = (target + sum) / 2;//填满j(包括j)这么大容积的包,有dp[j]种方法int[] dp = new int[goal + 1];dp[0] = 1;for (int i = 0; i < nums.length; i++) {for (int j = goal; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[goal];}
}

二维数组的实现

class Solution {public int findTargetSumWays(int[] nums, int target) {int sum = 0;for (int num : nums) {sum += num;}int diff = sum - target;if (diff < 0 || diff % 2 != 0) {return 0;}int n = nums.length, neg = diff / 2;int[][] dp = new int[n + 1][neg + 1];dp[0][0] = 1;for (int i = 1; i <= n; i++) {int num = nums[i - 1];for (int j = 0; j <= neg; j++) {dp[i][j] = dp[i - 1][j];if (j >= num) {dp[i][j] += dp[i - 1][j - num];}}}return dp[n][neg];}
}

474.一和零

力扣题目链接

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

解题思路

  1. dp[i][j]表示i个0和j个1时的最大子集

Java实现

class Solution {public int findMaxForm(String[] strs, int m, int n) {int[][] dp = new int[m + 1][n + 1];for (String str : strs) {int zeroNum = 0;int oneNum = 0;for (int i = 0; i < str.length(); i++) {if (str.charAt(i) == '0') {zeroNum++;} else {oneNum++;}}for (int i = m; i >= zeroNum; i--) {for (int j = n; j >= oneNum; j--) {dp[i][j] = Math.max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
}

总结一下

纯 0 - 1 背包 是求 给定背包容量 装满背包 的最大价值是多少。
416. 分割等和子集 是求 给定背包容量,能不能装满这个背包。
1049. 最后一块石头的重量 II 是求 给定背包容量,尽可能装,最多能装多少
494. 目标和 是求 给定背包容量,装满背包有多少种方法。
本题是求 给定背包容量,装满背包最多有多少个物品。

在这里插入图片描述

http://www.tj-hxxt.cn/news/28106.html

相关文章:

  • 温州网站建设方案外包怎么免费建公司网站
  • 中华人民住房和城乡建设厅网站广告营销案例分析
  • 天津 公司做网站武汉seo网站优化运营
  • 企业网站建设都能做哪些工作线上推广引流渠道
  • 设计参考图哪个网站好百度收录权重
  • 开源商城系统源码外贸网站seo教程
  • 建设网站需要哪些元素网络服务提供者收集和使用个人信息应当符合的条件有
  • 做网站怎么和广告公司合作常熟网站建设
  • 番禺网站制作多少钱百度商城app
  • 网站品牌建设营销策略4p分析怎么写
  • 河北省企业网站建设公司免费网站建站2773
  • 网站怎么做公司百度搜索优化
  • 平台推广销售话术百度关键词优化专家
  • wordpress小型论坛主题百度关键词优化快速排名软件
  • 全国网站建设哪家专业太原关键词排名优化
  • 重庆建设工程信息网官网成绩深圳seo优化推广公司
  • 免费加盟零投资百度搜索排名优化
  • 电子商城开发网站建设免费发布推广的网站有哪些
  • 上海网站建设优化seo河北seo基础
  • 德语网站制作关键词优化需要从哪些方面开展?
  • 基于html5的移动端网站开发搜索seo怎么优化
  • 怎样查看网站关键词网站收录查询系统
  • 网站源代码分列怎么做seo推广软件品牌
  • 网站分为哪几个部分深圳网络络推广培训
  • metro网站模板深圳网络品牌推广公司
  • 游戏推广群百度关键字优化价格
  • 手机微信网站开发教程推广公司是做什么的
  • 网站免费推广方案太极seo
  • 怎样做网站公司的销售百度推广开户免费
  • 网站域名备案和做网站如何优化关键词的排名