当前位置: 首页 > news >正文

买好了域名 如何做网站搜索引擎优化策略包括

买好了域名 如何做网站,搜索引擎优化策略包括,自己做的网站怎么接入网页游戏,做seo网站 公司数学建模:最优化问题及其求解概述 最优化问题定义分类离散优化问题连续优化问题 求解 此博客围绕运筹学以及最优化理论的相关知识,通俗易懂地介绍了最优化问题的定义、分类以及求解算法。 最优化问题 定义 数学优化(Mathematical Optimiza…

数学建模:最优化问题及其求解概述

  • 最优化问题
    • 定义
    • 分类
      • 离散优化问题
      • 连续优化问题
    • 求解

此博客围绕运筹学以及最优化理论的相关知识,通俗易懂地介绍了最优化问题的定义、分类以及求解算法。

最优化问题

定义

数学优化(Mathematical Optimization)问题,也叫最优化问题,属于运筹学研究的主要内容,它是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。这种问题在生活中很常见,例如如何利用有限的资源,实现最大的收益。下面给出最优化问题的数学定义:

给定一个函数 f f f,寻找一个变量 x 0 ∈ D x_0 \in D x0D,使得对于 D D D中所有的 x x x f ( x 0 ) ≤ f ( x ) f(x_0) \leq f(x) f(x0)f(x)(最小化)或者 f ( x 0 ) ≥ f ( x ) f(x_0) \geq f(x) f(x0)f(x)(最大化)。函数 f f f被称为目标函数或代价函数,通常集合 D D D需要满足一定的约束, D D D中的元素被称为可行解,一个最小化(或者最大化)目标函数的可行解被称为最优解。

分类

根据变量 x x x 的定义域是否为实数域,数学优化问题可以分为离散优化问题和连续优化问题。

离散优化问题

离散优化(Discrete Optimization)问题是目标函数的输入变量为离散变量,比如为整数或有限集合中的元素。离散优化问题的求解一般都比较困难,优化算法的复杂度都比较高。离散优化问题主要有两个分支:

  • 组合优化(Combinatorial Optimization):其目标是从一个有限集合中找出使得目标函数最优的元素。在一般的组合优化问题中,集合中的元素之间存在一定的关联,可以表示为图结构。典型的组合优化问题有旅行商问题(TSP,又称最短路径问题)、背包问题(Knapsack Problem,KP)、最小费用最大流(Minimum Cost Maximum Flow,MCMF)等。很多机器学习问题都是组合优化问题,比如特征选择、聚类问题、超参数优化问题以及结构化学习(Structured Learning)中标签预测问题等。通常小规模的组合优化问题可以采用精确求解算法进行最优解的计算,而大规模的组合优化问题一般采用启发式算法进行求解。
  • 整数规划(Integer Programming):输入变量为整数。一般常见的整数规划问题为整数线性规划(Integer Linear Programming,ILP)。整数线性规划的一种最直接的求解方法是:(1)去掉输入必须为整数的限制,将原问题转换为一般的线性规划问题,这个线性规划问题为原问题的松弛问题;(2)求得相应松弛问题的解;(3)把松弛问题的解四舍五入到最接近的整数。但是这种方法得到的解一般都不是最优的,因此原问题的最优解不一定在松弛问题最优解的附近,但可能可以为问题求解提供一个较好的可行解,因为这种方法得到的解也不一定满足约束条件。所以常用小规模整数规划问题的求解方法是采用精确求解算法;而对于大规模的整数规划问题一般采用启发式算法求解,虽然启发式算法不能求得整数规划的最优解,但是却能在短时间(通常多项式时间)内给出一个较好的可行解。

连续优化问题

连续优化(Continuous Optimization)问题是目标函数的输入变量为连续变量。在连续优化问题中,根据是否有变量的约束条件,可以将此类优化问题分为无约束优化问题和约束优化问题:

  • 无约束优化问题(Unconstrained Optimization)中变量 x 无任何约束,其可行域为整个实数域。针对连续优化中的无约束问题,通常的求解方法时梯度下降法,例如随机梯度下降算法、带动量的随机梯度下降算法和Adam算法等等。
  • 约束优化问题(Constrained Optimization)中变量 x 需要满足一些等式或不等式的约束。约束优化问题最经典的算法是使用拉格朗日乘数法来进行求解。这种方法将一个有 n 个变量与 k 个约束条件的最优化问题转换为一个有 ( n + k ) 个变量的方程组的极值问题,其变量不受任何约束。

此外,根据目标函数和约束条件是否线性,可以将此类优化问题分为线性优化问题和非线性优化问题:

  • 如果目标函数和所有的约束函数都为线性函数,则该问题为线性规划问题(Linear Programming,LP)。
  • 如果目标函数或任何一个约束函数为非线性函数,则该问题为非线性规划问题(Nonlinear Programming,NLP)。在非线性优化问题中,有一类比较特殊的问题是凸优化问题(Convex Programming)。凸优化问题是一种特殊的约束优化问题,需满足目标函数为凸函数,约束条件为凸集,即对于集合中任意两点,它们的连线全部位于在集合内部。在凸优化中,如果目标函数是关于变量的二次函数,那此类问题称为二次规划问题(Quadratic programming,QP)。

求解

对于最优化问题的求解可谓是一门艺术,无数数学家将实际问题抽象成一个数学问题,并对此提出了各种各样的求解算法,那么最常见、经典的求解方法主要有以下几种:精确算法、近似算法和启发式算法。

  • 精确算法是指能够求出问题最优解的算法。当问题的规模较小时,精确算法能够在可接受的时间内得到最优解;当问题的规模较大时,精确算法一方面可以提供问题的可行解,另一方面可以为启发式算法提供初始解,以便搜索到更好的解。精确算法有分支定界法割平面法动态规划法等。
  • 近似算法是指用近似方法来解决优化问题的算法,通常与 NP-hard 问题相关,由于无法有效地在多项式时间内精确地求得最优解,所以考虑在多项式时间内求得一个有质量保证的近似解。近似算法包括贪婪算法局部搜索算法松弛算法等。
  • 启发式算法是一种基于直观或经验构造的算法,能在可接受的计算成本内尽可能地逼近最优解,得到一个相对优解,但无法预计所得解与最优解的近似程度。启发式算法可分为传统启发式算法和元启发式算法,传统启发式算法包括构造性方法局部搜索算法松弛方法解空间缩减算法等。元启发式算法包括禁忌搜索算法模拟退火算法遗传算法蚁群算法粒子群算法人工神经网络等。

相关最优化问题的求解软件或算法库有:lingo、Matlab、Python(Gurobi、pulp)等等。

http://www.tj-hxxt.cn/news/2714.html

相关文章:

  • 混合式教学财务管理网站建设深圳网络营销推广中心
  • 做网站商城需要什么条件nba赛程排名
  • 做网站不切片可以吗广东seo外包服务
  • 上海的网站建设天津seo外包团队
  • 网站标题符号的应用百度网盘app官方下载
  • 做手机网站多少钱网络营销的概念和特点是什么
  • 国外网站建设软件宣传软文是什么
  • 年前做招聘网站话术做个小程序需要花多少钱
  • 做房产网站有哪些百度浏览器下载安装
  • 做算命网站赚钱吗2345网址导航智能主板
  • 网页qq空间登录seo概念的理解
  • 给学校做网站网页制作工具
  • 怎么给网站动态做伪静态网站seo优化排名
  • 做网站必须要切图吗湖南关键词优化快速
  • 网站建设资金的请示郑州网络营销
  • 做数学题挣钱的网站app投放推广
  • 个人 网站备案网站seo方案案例
  • 上海网站建设 永灿百度广告推广
  • 企业站seo点击软件网络营销平台有哪些?
  • 泉州网站制作企业如何做网络推广
  • 全球外贸网来宾网站seo
  • 免费建设企业网站app拉新推广平台代理
  • 北京专业网站制作百度广告电话号码
  • 网站空间独立ip游戏推广话术技巧
  • 福州网站设计十年乐云seo免费自助建站模板
  • 网站怎么做qq的授权登陆黄页引流推广网站
  • 织梦dede做网站的优点手游推广加盟
  • 浙江信息港证件查询网站搜索优化找哪家
  • 基于互联网 模式下的安全网站建设seo关键词排名优化手机
  • 泰安本地网站津seo快速排名