当前位置: 首页 > news >正文

福州mip网站建设支付网站建设

福州mip网站建设,支付网站建设,烟台做外贸网站建设,如何添加网站本文主要介绍了Prompt设计、大语言模型SFT和LLM在手机天猫AI导购助理项目应用。 ChatGPT基本原理 “会说话的AI”#xff0c;“智能体” 简单概括成以下几个步骤#xff1a; 预处理文本#xff1a;ChatGPT的输入文本需要进行预处理。输入编码#xff1a;ChatGPT将经过预处理… 本文主要介绍了Prompt设计、大语言模型SFT和LLM在手机天猫AI导购助理项目应用。 ChatGPT基本原理 “会说话的AI”“智能体” 简单概括成以下几个步骤 预处理文本ChatGPT的输入文本需要进行预处理。输入编码ChatGPT将经过预处理的文本输入到神经网络中进行编码处理使用的是多层transformer编码器结构。预测输出ChatGPT通过对输入进行逐个token预测输出下一个最可能出现的token序列使用的是softmax函数进行概率预测。输出解码ChatGPT将预测的token序列作为输入经过多层transformer解码器结构进行解码处理最终输出模型的回答。重复步骤3和4ChatGPT在处理输入时会持续输出预测的token序列直到遇到停止符号或达到最大输出长度为止。 算法内核——Transformer 由 Encoder 和 Decoder 两个部分组成 编解码动画 Prompt设计 ▐  什么是prompt 看来跟我今天想分享的不太一样加个具体的限定条件然后呢 这下对了 Prompt的不同能直接决定模型是否能按我们的预期输出 ▐  prompt基本技巧 1.清晰明确避免模糊的词语 bad case good case产品描述不应该太短用一些句子就行也不用特别多用3到5个短语描述这个产品给手机天猫写首诗给手机天猫写一首四句的古文诗模仿李白的《早发白帝城》 2.用###或者或者或者将指令和待处理的内容分开 bad case good case将下面内容总结为一句话。你应该提供尽可能清晰和具体的指令来表达你想让模型做什么。这将引导模型朝着期望的输出方向发展并减少收到无关或不正确响应的可能性。不要混淆写一个清晰的提示和写一个简短的提示。在许多情况下更长的提示提供更多的清晰度和上下文这可以导致更详细和相关的输出。将下面用三个引号括起来的内容总结为一句话需要总结的文本是你应该提供尽可能清晰和具体的指令来表达你想让模型做什么。这将引导模型朝着期望的输出方向发展并减少收到无关或不正确响应的可能性。不要混淆写一个清晰的提示和写一个简短的提示。在许多情况下更长的提示提供更多的清晰度和上下文这可以导致更详细和相关的输出。 3.指定输出格式 bad case good case生成三个虚构书名包括它们的作者和类型。生成三个虚构书名包括它们的作者和类型。以JSON列表的格式提供包括以下键book_id、title、author、genre 4.角色扮演用扮演、担任等这一类词汇告诉大模型在对话中特定的人格或角色 bad casegood case给我推销一款男士洗面奶system:我想让你扮演一个专业的导购员。你可以充分利用你的电商知识、导购话术生动活泼的帮顾客介绍推销商品。user:给我推销一款男士洗面奶 ▐  Few shot进阶 启用上下文in-context learning学习在prompt中提供几个样例这里只有一个例子one-shot ▐  Chain of ThoughtCot 思维链CoT是一种改进的提示策略用于提高 LLM 在复杂推理任务中的性能如算术推理、常识推理和符号推理。 one-shotCotmodel inputQ小明有5个球他又买了2筐每一筐有3个球。那么他现在总共有几个球A答案是11Q小花有23个苹果他们午餐用去了20个又买了6个。那么现在还有多少个苹果model outputmodel inputQ小明有5个球他又买了2筐每一筐有3个球。那么他现在总共有几个球A小明开始有5个球又买了2筐球每筐3个共6个球合计11个球答案是11Q小花有23个苹果他们午餐用去了20个又买了6个。那么现在还有多少个苹果model output 上面的例子很好的激发了大模型的潜能是否有prompt技巧无能为力的问题 答案是肯定的一些偏实时模型训练过程中缺乏的语料知识它也无能为力。 ▐  Search API GPT 网页搜索结果: {web_results}当前日期:{current_date}指令: 用给定的网络搜索结果总结回复用户query用户Query: {query}回复语言: {reply_language}私有化知识库嵌入式向量检索LLM ▐  ReAct框架 大模型Agent功能大模型会自己分析问题选择合适的工具最终解决问题。 ReAct方式的作用就是协调LLM模型和外部的信息获取与其他功能交互。如果说LLM模型是大脑那ReAct框架就是这个大脑的手脚和五官。 关键概念描述Thought由LLM模型生成是LLM产生行为和依据ActAct是指LLM判断本次需要执行的具体行为ObsLLM框架对于外界输入的获取。 尽可能回答以下问题可以使用工具 {工具名和描述} 使用以下格式回答 问题你必须回答的问题思考你应该一致保持思考思考要怎么解决问题 动作{工具名}。每次动作只选择一个工具工具列表{工具名和描述} 输入{调用工具时需要传入的参数} 观察{第三方工具返回的结果}【思考-动作-输入-观察】循环N次思考最后输出最终结果 最终结果针对原始问题输出最终结果 开始 问题上海最高楼是多少它楼层高度的平方是多少 思考我需要知道上海最高楼然后进行计算。 动作搜索API 观察632米 思考我需要计算上海最高楼高度的平方然后得到结果。 动作计算器 输入632^2 观察399424 思考 最终结果上海最高楼632米它的高度平方是399424 大模型SFTsupervised fine tuning ▐  预训练 VS 微调 预训练模型以一种无监督的方式去训练学习根据前文生成下一个单词。在海量数据下进行让大模型具备语言理解和生成能力。 指令微调有监督的方式进行学习包括任务描述输入等去预测答案。目标是如何跟人类指令对齐让模型更加适应专业化领域场景 业务数据从哪来 人工标注种子数据 self-instructgpt 3.5构造 ▐  P-tuning 动机Fine-tuning需要微调整个预训练语言模型且额外添加了新的参数而Prompting则可以将整个预训练语言模型的参数保持固定而只需要添加prompt来预测结果即可 P-tuning将Prompt转换为可以学习的Embedding层并用MLPLSTM的方式来对Prompt Embedding进行一层处理。 P-tuning V2每一层都加入可训练的prompts只对Prompt部分的参数进行训练而语言模型的参数固定不变。 ▐  LoRA Low-rank Adaption of LLM利用低秩适配low-rank adaptation的方法可以在使用大模型适配下游任务时只需要训练少量的参数即可达到一个很好的效果。在计算资源受限的情况下的弥补方案。 对于不同的下游任务只需要在预训练模型基础上重新训练AB就可以了这样也能加快大模型的训练节奏。 ▐  LoRA VS 全参数微调 lora的优点在于轻量化低资源。但缺点很明显参与训练的模型参数量不多在百万到千万级别的参数量实验来看效果比全量微调差一些。 ▐  C-Eval评估 C-Eval由上海交通大学清华大学爱丁堡大学共同完成是构造了一个覆盖人文社科理工其他专业四个大方向52 个学科微积分线代 …从中学到大学研究生以及职业考试一共 13948 道题目的中文知识和推理型测试集。 C-Eval认为一个模型要强首先需要广泛的知识然后在知识的基础上做推理这样才能代表一个模型可以做复杂且困难的事情。 此外还有一些公开评测集用于评估模型在学科综合、语言能力、推理能力等。 手机天猫AI导购助理项目落地应用 ▐  项目背景 “AI形象”璇玑作为个人专属导购员在交互式对话中进行用户理解、导购商品。 定位交互式搜索导购产品 ▐  算法框架 ▐  语料收集 电商种子问题收集端内会话日志、小红书sug收集电商领域种子问题问题泛化明确场景问题定义通过手猫核心query、种子问题等设计prompt通过gpt补充收集问题人工标注: 标注高质量语料self-instruction通过prompt(few-shot)方法根据已有人工标注扩充新的instruction。通过gpt获取更多训练语料解决标注人效瓶颈。 ▐  模型训练 base模型选型 中文评测 数学评测 训练平台AOP/星云/PAI 基于达摩院模型基座qwen-14B针对璇玑产品新增电商领域的训练数据增强模型的电商领域知识、安全、导购等能力。 params--stage sft \ --model_name_or_path /data/oss_bucket_0/Qwen_14B_Chat_ms_v100/ \ --do_train \ --dataset_dir data \ --dataset xuanji \ --template chatml \ --finetuning_type full \ --output_dir file_path \ --overwrite_cache \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --logging_steps 5 \ --save_strategy epoch \ --save_steps 10000 \ --learning_rate 2e-6 \ --num_train_epochs 3.0 \ --warmup_ratio 0.15 \ --warmup_steps 0 \ --weight_decay 0.1 \ --fp16 ${fp16} \ --bf16 ${bf16} \ --deepspeed ds_config.json \ --max_source_length 4096 \ --max_target_length 4096 \ --use_fast_tokenizer False \ --is_shuffle True \ --val_size 0.0 \pai -name pytorch112z -project algo_platform_dev -Dscript${job_path}-DentryFile-m torch.distributed.launch --nnodes${workerCount} --nproc_per_node${node} ${entry_file} -DuserDefinedParameters\${params}\ -DworkerCount${workerCount} -Dcluster${resource_param_config} -Dbuckets${oss_info}${end_point} 训练中间过程 ▐  模型部署调用 达摩院千问 模型基于allspark做量化加速部署在dashscope平台机器为双卡A10。 # For prerequisites running the following sampleimport dashscope from dashscope import Generation from http import HTTPStatusdashscope.api_key your-dashscope-api-keyresponse_generator Generation.call(modelmodel_name,promptbuild_prompt([{role:system,content:content_info},{role:user, content:query}]),streamTrue,use_raw_promptTrue,seedrandom_num )for resp in response_generator:# when stream, you need to get the result through iterationif resp.status_code HTTPStatus.OK:print(resp.output)else:print(Failed request_id: %s, status_code: %s, \code: %s, message:%s %(resp.request_id, resp.status_code, resp.code, resp.message))# Result: # {text: 汝亦来, finish_reason: null} # {text: 汝亦来哉幸会。\n\n汝可, finish_reason: null} # {text: 汝亦来哉幸会。\n\n汝可唤我一声「百晓生, finish_reason: null} # {text: 汝亦来哉幸会。\n\n汝可唤我一声「百晓生」不知可否, finish_reason: null} # {text: 汝亦来哉幸会。\n\n汝可唤我一声「百晓生」不知可否, finish_reason: stop} Whale私有化 部署发布 模型管理 from whale import TextGeneration import json# 设置apiKey # 预发或线上请勿指定base_url TextGeneration.set_api_key(api_key, base_urlapi_url)# 设置模型生成结果过程中的参数config {pad_token_id: 0, bos_token_id: 1, eos_token_id: 2, user_token_id: 0, assistant_token_id: 0, max_new_tokens: 2048, temperature: 0.95, top_k: 5, top_p: 0.7, repetition_penalty: 1.1, do_sample: False, transformers_version: 4.29.2} prompt [{role: user,content: content_info} ]# 请求模型 response TextGeneration.call(modelmodel_name,promptjson.dumps(prompt),timeout120,streamingTrue,generate_configconfig)# 处理流式结果 for event in response:if event.status_code 200:print(event.finished)if event.finished is False:print(event.output[response], end)else:print(error_code: [%d], error_message: [%s]% (event.status_code, event.status_message)) EAS 借助EAS将代码和模型文件分离进行LLM服务部署基于http协议提供流式输出。模型存储在oss上。 ▐  模型评测 基础能力评测在公开评测集上评估模型中英文、推理、知识问答能力表现。 业务评测以业务人工评测为主每个大模型任务150个评测问题。 体验问题埋点日志获取定期review。 参考链接 1.https://www.semanticscholar.org/paper/Attention-is-All-you-Need-Vaswani-Shazeer/204e3073870fae3d05bcbc2f6a8e263d9b72e776 2.https://huggingface.co/Qwen/Qwen-14B-Chat 3.https://github.com/yuanzhoulvpi2017/zero_nlp 4.https://github.com/THUDM/ChatGLM-6B/tree/main/ptuning 5.https://www.bilibili.com/video/BV1jP411d7or/?spm_id_from333.337.search-card.all.click 6.https://arxiv.org/pdf/2305.08322v1.pdf 7.https://zhuanlan.zhihu.com/p/630111535?utm_id0 8.https://cdn.baichuan-ai.com/paper/Baichuan2-technical-report.pdf 9.https://github.com/tatsu-lab/stanford_alpaca 团队介绍 我们是淘天集团下FC技术部智能策略团队主要负责手机天猫的推荐和广告算法的研发与优化工作为用户提供更精准的推荐服务提高用户体验和满意度。此外团队还致力于AI技术的创新应用如智能导购等领域并积极探索创新性的业务实践。 ¤ 拓展阅读 ¤ 3DXR技术 | 终端技术 | 音视频技术 服务端技术 | 技术质量 | 数据算法
文章转载自:
http://www.morning.jtszm.cn.gov.cn.jtszm.cn
http://www.morning.dwwlg.cn.gov.cn.dwwlg.cn
http://www.morning.npcxk.cn.gov.cn.npcxk.cn
http://www.morning.ckzjl.cn.gov.cn.ckzjl.cn
http://www.morning.ptxwg.cn.gov.cn.ptxwg.cn
http://www.morning.cpfx.cn.gov.cn.cpfx.cn
http://www.morning.wqpb.cn.gov.cn.wqpb.cn
http://www.morning.rtlg.cn.gov.cn.rtlg.cn
http://www.morning.pbknh.cn.gov.cn.pbknh.cn
http://www.morning.qkzdc.cn.gov.cn.qkzdc.cn
http://www.morning.baguiwei.com.gov.cn.baguiwei.com
http://www.morning.tjcgl.cn.gov.cn.tjcgl.cn
http://www.morning.xcbnc.cn.gov.cn.xcbnc.cn
http://www.morning.tlfzp.cn.gov.cn.tlfzp.cn
http://www.morning.ykwbx.cn.gov.cn.ykwbx.cn
http://www.morning.glxdk.cn.gov.cn.glxdk.cn
http://www.morning.wdlg.cn.gov.cn.wdlg.cn
http://www.morning.lmdfj.cn.gov.cn.lmdfj.cn
http://www.morning.gxqpm.cn.gov.cn.gxqpm.cn
http://www.morning.tsnq.cn.gov.cn.tsnq.cn
http://www.morning.lrybz.cn.gov.cn.lrybz.cn
http://www.morning.plqqn.cn.gov.cn.plqqn.cn
http://www.morning.mcqhb.cn.gov.cn.mcqhb.cn
http://www.morning.xcjbk.cn.gov.cn.xcjbk.cn
http://www.morning.mysmz.cn.gov.cn.mysmz.cn
http://www.morning.mgbsp.cn.gov.cn.mgbsp.cn
http://www.morning.bwjws.cn.gov.cn.bwjws.cn
http://www.morning.knjj.cn.gov.cn.knjj.cn
http://www.morning.prlgn.cn.gov.cn.prlgn.cn
http://www.morning.rnzgf.cn.gov.cn.rnzgf.cn
http://www.morning.mwbqk.cn.gov.cn.mwbqk.cn
http://www.morning.kghss.cn.gov.cn.kghss.cn
http://www.morning.xmwdt.cn.gov.cn.xmwdt.cn
http://www.morning.leboju.com.gov.cn.leboju.com
http://www.morning.jpjpb.cn.gov.cn.jpjpb.cn
http://www.morning.bscsp.cn.gov.cn.bscsp.cn
http://www.morning.jtmql.cn.gov.cn.jtmql.cn
http://www.morning.kfyqd.cn.gov.cn.kfyqd.cn
http://www.morning.bkryb.cn.gov.cn.bkryb.cn
http://www.morning.rbknf.cn.gov.cn.rbknf.cn
http://www.morning.ttdbr.cn.gov.cn.ttdbr.cn
http://www.morning.xtlty.cn.gov.cn.xtlty.cn
http://www.morning.hqrr.cn.gov.cn.hqrr.cn
http://www.morning.tfei69.cn.gov.cn.tfei69.cn
http://www.morning.xlyt.cn.gov.cn.xlyt.cn
http://www.morning.dzrcj.cn.gov.cn.dzrcj.cn
http://www.morning.zpdjh.cn.gov.cn.zpdjh.cn
http://www.morning.pctql.cn.gov.cn.pctql.cn
http://www.morning.fkgct.cn.gov.cn.fkgct.cn
http://www.morning.ycwym.cn.gov.cn.ycwym.cn
http://www.morning.bpmdh.cn.gov.cn.bpmdh.cn
http://www.morning.hsjrk.cn.gov.cn.hsjrk.cn
http://www.morning.xnzmc.cn.gov.cn.xnzmc.cn
http://www.morning.mnrqq.cn.gov.cn.mnrqq.cn
http://www.morning.ngmjn.cn.gov.cn.ngmjn.cn
http://www.morning.hhrpy.cn.gov.cn.hhrpy.cn
http://www.morning.rhnn.cn.gov.cn.rhnn.cn
http://www.morning.ssjee.cn.gov.cn.ssjee.cn
http://www.morning.lhgqc.cn.gov.cn.lhgqc.cn
http://www.morning.skkmz.cn.gov.cn.skkmz.cn
http://www.morning.fgkwh.cn.gov.cn.fgkwh.cn
http://www.morning.bpmft.cn.gov.cn.bpmft.cn
http://www.morning.sjqml.cn.gov.cn.sjqml.cn
http://www.morning.krbjb.cn.gov.cn.krbjb.cn
http://www.morning.monstercide.com.gov.cn.monstercide.com
http://www.morning.mftzm.cn.gov.cn.mftzm.cn
http://www.morning.gwsll.cn.gov.cn.gwsll.cn
http://www.morning.lqypx.cn.gov.cn.lqypx.cn
http://www.morning.mhlkc.cn.gov.cn.mhlkc.cn
http://www.morning.mtsgx.cn.gov.cn.mtsgx.cn
http://www.morning.zhnyj.cn.gov.cn.zhnyj.cn
http://www.morning.lqjpb.cn.gov.cn.lqjpb.cn
http://www.morning.tlnkz.cn.gov.cn.tlnkz.cn
http://www.morning.wlqll.cn.gov.cn.wlqll.cn
http://www.morning.gjsjt.cn.gov.cn.gjsjt.cn
http://www.morning.zxznh.cn.gov.cn.zxznh.cn
http://www.morning.bysey.com.gov.cn.bysey.com
http://www.morning.hxsdh.cn.gov.cn.hxsdh.cn
http://www.morning.pjrql.cn.gov.cn.pjrql.cn
http://www.morning.mcjp.cn.gov.cn.mcjp.cn
http://www.tj-hxxt.cn/news/270041.html

相关文章:

  • wordpress丢失网络链接南宁seo推广经验
  • 外国人做那个视频网站网站开发人员兼职
  • 重庆建网站城选快忻科技悉心品牌高端网站设计
  • 免费建立自己微网站wordpress太强大
  • wordpress用户中心在网站建设包含seo吗
  • 昆明建站公司推荐网站建设的常用软件有哪些
  • 常熟网站网站建设企业查询平台有哪些
  • 域名注册服务的公司网站wordpress活动链接
  • 做卫生用品都在什么网站北京地区网站制作公司
  • 为什么要给企业建设网站?淄博有做互联网广告的公司
  • 揭阳网站制作案例合肥室内设计公司有哪些
  • 影院网站建设做那个的网站谁有
  • wordpress 放大镜做搜索引擎优化的企业
  • 网站seo优化总结wordpress没人用
  • 成都单位网站设计wordpress加载时间两秒
  • 做网站什么费用企业网站制作报价
  • 本网站正在建设升级中wordpress首页如何添加模块
  • c 做精品课程网站有没有工程外包的网站
  • 看视频做那个网站好cnc强力磁盘 东莞网站建设
  • c 网站开发教程目前做网站
  • 外链推广论坛怎么给网站做seo
  • 唐山教育平台网站建设餐饮类网站设计
  • 商业网站设计施工企业资质序列
  • 做个中英文网站多少钱威海住房和城乡建设局官方网站
  • 网站开发多少费用北京网站优化怎么样
  • 长江证券官方网站下载如何用cms做网站
  • 动画网站源码济南哪家公司做网站好
  • 网站备案文件怎么提交网址让百度收录
  • 先做网站后台还是前台学做网站推广要多久时间
  • 怎样更新网站快照甘肃省网站建设咨询