当前位置: 首页 > news >正文

幼儿园网站建设的好处网站seo方案撰写

幼儿园网站建设的好处,网站seo方案撰写,网页图片怎么下载,上海装修公司口碑哪家好基于PCA与LDA的数据降维实践 描述 数据降维(Dimension Reduction)是降低数据冗余、消除噪音数据的干扰、提取有效特征、提升模型的效率和准确性的有效途径, PCA(主成分分析)和LDA(线性判别分析&#xff0…

基于PCA与LDA的数据降维实践

描述

数据降维(Dimension Reduction)是降低数据冗余、消除噪音数据的干扰、提取有效特征、提升模型的效率和准确性的有效途径, PCA(主成分分析)和LDA(线性判别分析)是机器学习和数据分析中两种常用的经典降维算法。

本任务通过两个降维案例熟悉PCA和LDA降维的原理、区别及调用方法。

源码下载

环境

  • 操作系统:Windows 10、Ubuntu18.04

  • 工具软件:Anaconda3 2019、Python3.7

  • 硬件环境:无特殊要求

  • 依赖库列表

    matplotlib   	3.3.4
    scikit-learn	0.24.2
    

分析

任务1、基于PCA算法实现鸢尾花数据集降维,涉及下列三个环节:

A)加载鸢尾花(Iris)数据并进行降维

B)降维后的数据可视化

C)使用K-NN算法进行分类,对比降维前后的分类准确性

任务2、基于LDA算法实现红酒数据集降维,涉及以下四个环节:

A)加载红酒数据集

B)使用PCA和LDA两种算法对数据进行降维

C)降维结果可视化

D)降维前后的分类准确性对比

实施

1、基于PCA算法实现鸢尾花数据集降维

鸢尾花数据原有四个特征维度,运用PCA算法将特征维度降为两个,之后进行可视化并运用K-NN算法进行分类,对比降维前后的分类准确性(数据降维的目的之一是提升模型的准确性)。

1.1 加载鸢尾花特征数据,并使用PCA算法降维

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier# 加载鸢尾花数据集
iris= load_iris()
data = iris.data # 特征数据
target = iris.target # 标签数据
print(data.shape) # 查看数据维度(150, 4)# PCA降维
pca = PCA(n_components = 2).fit(data) # 利用PCA算法降成2维
new_data = pca.transform(data)
print(new_data.shape) # 查看数据维度(150,2)

结果如下:

(150, 4)
(150, 2)

可以看到,鸢尾花数据由四维(四个特征)降为两维度。

1.2 数据可视化,并使用K-NN算法对比降维前后的分类准确性

# 降维后的数据集可视化
plt.title('Iris dimensions reduction: 4 to 2')
plt.scatter(new_data[:, 0], new_data[:, 1], c=target)
plt.show()# 使用KNN算法对比降维前后分类的准确性
model = KNeighborsClassifier(3)
score = model.fit(data, target).score(data, target)
print('4-dims:', score)
score = model.fit(new_data, target).score(new_data, target)
print('2-dims:', score)

输出结果:

请添加图片描述

结果分析:

数据从4维降到2维后,可以很方便地进行可视化。从散点图中直观地看,降维后的数据较好地保留了原数据的分布信息。另外可以看到,降维后的KNN分类模型准确性有所提升,这也是数据降维的目的之一。

2、基于LDA算法实现红酒数据集降维

红酒数据集(Wine)有13个特征(即13个维度),我们分别使用PCA和LDA算法对数据集进行降维(降成2维),之后使用逻辑回归(LogisticRegression)分别在LDA算法降维前后的数据集上建立分类模型,对比同一种模型在数据集降维前后的准确性,直观感受数据降维对模型准确性的影响。

2.1 加载红酒数据集

import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis 
from sklearn.datasets import load_wine# 加载红酒数据集
wine= load_wine()
data = wine.data
target = wine.target
print(data.shape) # 查看数据维度

2.2 分别使用LDA和PCA算法进行降维

# PCA降维(无类别)
pca = PCA(n_components = 2).fit(data) # 利用PCA算法降成2维
data_pca = pca.transform(data) # 降维转换
print('PCA:', data_pca.shape) # 查看数据维度# LDA降维(有类别,考虑样本标签)
lda = LinearDiscriminantAnalysis(n_components=2).fit(data, target)
data_lda = lda.transform(data)
print('LDA:', data_lda.shape)

结果如下:

(178, 13)
PCA: (178, 2)
LDA: (178, 2)

可以看到,两种算法都将红酒数据集由13维降成2维。

2.3 降维结果可视化

数据降到2维后,可以很方便地用散点图进行可视化,下面分别将两种算法降维后的红酒数据集进行可视化,对比其分布情况。

# LDA算法更适合有标签数据的降维
# 下面将两种方法降维后的数据进行可视化
fig = plt.figure(figsize=(12, 4)) # 生成画板# PCA降维结果
ax1 = fig.add_subplot(1, 2, 1) # 添加子图1
ax1.set_title('PCA')
ax1.scatter(data_pca[:, 0], data_pca[:, 1], c=target)# LDA降维结果
ax2 = fig.add_subplot(1, 2, 2) # 添加子图2
ax2.set_title('LDA')
ax2.scatter(data_lda[:, 0], data_lda[:, 1], c=target)plt.show() # 显示图像

显示结果:

请添加图片描述

可以看到,LDA降维因为考虑到了样本的类别标签信息,降维后的数据分布能够较好地将类型分开。

2.4 LDA降维前后的分类准确性对比

使用逻辑回归算法,对LDA降维前后的数据集建立分类模型,对比其准确性。

from sklearn.model_selection import  train_test_split
from sklearn.linear_model import LogisticRegression# 1、使用逻辑回归模型,在降维前的数据集上训练并评估
X_train, X_test, y_train, y_test = train_test_split(data, target, random_state=0)model = LogisticRegression().fit(X_train, y_train)
score = model.score(X_test, y_test) # 在测试集上评估分类准确性
print(score)# 2、在LDA降维后的数据集上训练并评估
X_train, X_test, y_train, y_test = train_test_split(data_lda, target, random_state=0)
model = LogisticRegression().fit(X_train, y_train)
score = model.score(X_test, y_test) # 在测试集上评估分类准确性
print(score)

结果如下:

0.9333333333333333
1.0

可以看到,使用LDA降维后的数据建模,分类准确性有所提升。

http://www.tj-hxxt.cn/news/26966.html

相关文章:

  • 文本文档写入代码做网站win10优化大师官网
  • wordpress删除作者信息济南网站优化培训
  • 颐高养生园网站建设百度信息流怎么收费
  • 做网站法人拍照背景seo网站排名全选
  • 咸阳营销型网站建设临沂seo推广外包
  • 怎样做商城网站的推广seo网络优化是做什么的
  • 深圳网站建设php网络营销属于什么专业类型
  • 电商网站搭建流程长沙推广引流
  • 云南高端网站建设公司网站建设计划书
  • 苹果电脑适合网站开发人员比较靠谱的网站
  • 装饰设计师在哪个平台上寻找seo网址大全
  • 工业和信息化部网站备案系统查询seo排名资源
  • 如何建设一个好的企业网站seo快速排名源码
  • 盐城市城乡和住房建设厅网站快速排名点击工具
  • 网站开发数据库有关合同最新舆情信息网
  • 深圳做二维码网站设计免费发广告的软件
  • 带有响应式的网站合肥seo管理
  • wordpress是怎么添加登录的seo怎么去优化
  • 做的网站为什么图片看不了怎么回事搜索引擎优化的步骤
  • 网站备案 登陆短视频推广app
  • 容桂网站制作价位西安竞价托管
  • 企业请别人做网站搜索引擎网站优化推广
  • 抓取资源的网站怎么做刷网站排名软件
  • 沈阳网站制作哪家好泰州seo外包公司
  • 石家庄最新今天消息资源优化网站排名
  • 做网站开发的商标注册如何线上推广自己产品
  • 色情网站制作百度推广代运营公司
  • 专门做头像的网站万秀服务不错的seo推广
  • 网页设计与制作心得体会100字成都seo公司
  • 站酷网海报素材图片最新国际新闻头条新闻