珠宝网站建设公司,如何创建企业网站,微信商户平台登录入口,wordpress 站点身份Flink -- ProcessFunction处理函数概述处理函数基本处理函数 ProcessFunction按键分区处理函数 KeyedProcessFunction定时器与定时服务基于处理时间的分区处理函数基于事件时间的分区处理函数窗口处理函数 ProcessWindowFunction应用案例 -- Top N处理函数概述 
为了使代码拥有…
Flink -- ProcessFunction处理函数概述处理函数基本处理函数 ProcessFunction按键分区处理函数 KeyedProcessFunction定时器与定时服务基于处理时间的分区处理函数基于事件时间的分区处理函数窗口处理函数 ProcessWindowFunction应用案例 -- Top N处理函数概述 
为了使代码拥有更强大的表现力和易用性Flink 本身提供了多层 API 供我们选择如下图所示。之前我们所学习的转换、聚合以及窗口函数等操作都是基于 Flink 核心的 DataStream API 实现的。 在更底层Flink 允许我们可以不定义任何具体的算子而是提炼出了一个统一的处理操作。在这个处理函数中我们可以对数据进行更加灵活的定制化的处理其不限定我们具体要做什么因此在理论再说我们可以实现任何操作。 
本文用到的实体类代码以及源算子代码如下 
实体类 Event 
Data
AllArgsConstructor
NoArgsConstructor
public class Event {public String user;public String url;public Long timestamp;}源算子 EventSource 
public class EventSource implements SourceFunctionEvent {private Boolean flag  true;String[] users  {曹操, 刘备, 孙权, 诸葛亮};String[] urls  {/home, /test?id1, /test?id2, /play/football, /play/basketball};Overridepublic void run(SourceContextEvent sourceContext) throws Exception {Random random  new Random();while (flag) {sourceContext.collect(new Event(users[random.nextInt(users.length)],urls[random.nextInt(urls.length)],Calendar.getInstance().getTimeInMillis()));Thread.sleep(1000);}}Overridepublic void cancel() {flag  false;}
}处理函数 
Flink 提供了 8 个不同的处理函数 ProcessFunction最基本的处理函数基于DataStream调用process()并将该处理函数作为参数传入  KeyedProcessFunction对按键分区后的流的处理函数基于KeyedStream调用process()并将该处理函数作为参数传入  ProcessWindowFunction开窗操作之后的处理函数也是全窗口函数的代表基于WindowedStream调用process()并将该处理函数作为参数传入  ProcessAllWindowFunction开窗操作之后的处理函数基于AllWindowedStream调用process()并将该处理函数作为参数传入  CoProcessFunction合并两条流之后的处理函数基于ConnectedStreams调用process()并将该处理函数作为参数传入  ProcessJoinFunction间接连接两条流之后的处理函数基于IntervalJoined调用process()并将该处理函数作为参数传入  BroadcastProcessFunction广播连接流处理函数基于BroadcastConnectedStream调用process()并将该处理函数作为参数传入  KeyedBroadcastProcessFunction基于按键分区的广播连接流的处理函数基于BroadcastConnectedStream调用process()并将该处理函数作为参数传入  
基本处理函数 ProcessFunction 
使用基本处理函数需要我们实例化抽象类ProcessFunction其内部定义了两个抽象方法 processElement()必须实现用于处理元素。其传入的三个参数如下  value当前正在被处理的元素类型与流中的数据类型一致  ctx内部抽象类代表当前正在运行的上下文可以获取当前时间戳并提供了用于查询时间和注册定时器的“定时服务”以及可以将数据发送到“侧输出流” 的方法output()  out用于返回输出数据   onTimer()用于定义定时触发的操作其同样需要传入三个参数  timestamp设定好的时间在事件时间语义下即水位线  ctx运行上下文  out用于返回输出数据   
处理函数都是基于事件触发的。水位线就如同插入流中的一条数据一样。只不过处理真正的数据事件调用的是processElement()方法而处理水位线事件调用的是onTimer()。 
基本处理函数的基本使用代码如下 
public class ProcessFunctionDemo {public static void main(String[] args) throws Exception {// 1. 环境准备StreamExecutionEnvironment environment  StreamExecutionEnvironment.getExecutionEnvironment();environment.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);environment.setParallelism(1);// 2. 加载数据源并设置水位线environment// 2.1 加载数据源.addSource(new EventSource())// 2.2 获取时间戳、设置水位线.assignTimestampsAndWatermarks(WatermarkStrategy.EventforMonotonousTimestamps().withTimestampAssigner((SerializableTimestampAssignerEvent) (event, l) - event.timestamp))// 2.3 设置处理函数.process(new ProcessFunctionEvent, String() {Overridepublic void processElement(Event event, ProcessFunctionEvent, String.Context context, CollectorString collector) throws Exception {if (曹操.equals(event.user)) {collector.collect(event.user  说曹操曹操到...);} else if (刘备.equals(event.user)) {collector.collect(event.user  不可能我二弟天下无敌);} else {collector.collect(无关人等~);}System.out.println(longToDate(context.timerService().currentWatermark()));}})// 2.4 执行输出.print();// 3. 执行程序environment.execute();}/*** long类型转换成日期** param lo 毫秒数* return String yyyy-MM-dd HH:mm:ss*/public static Date longToDate(long lo) throws ParseException {SimpleDateFormat sd  new SimpleDateFormat(yyyy-MM-dd HH:mm:ss);//long转Datereturn new SimpleDateFormat(yyyy-MM-dd HH:mm:ss).parse(sd.format(new Date(lo)));}}按键分区处理函数 KeyedProcessFunction 
定时器与定时服务 
定时器 Timer 是处理函数当中进行时间相关的操作的主要机制在onTimer()方法中可以自定义定时器触发的逻辑。而定时器触发的前提是该定时器已经注册且当前已经到达了触发时间。定时器的注册通过上下文提供的定时服务 TimerService 实现。 
定时服务与当前运行环境有关上下文 context 提供了timerService()方法可以直接获取TimerService对象。TimerService类中定义了关于时间和定时器的基础服务接口主要包含以下 6 个方法 
// 获取当前的处理时间
long currentProcessingTime();
// 获取当前的水位线事件时间
long currentWatermark();
// 注册处理时间定时器当处理时间超过 time 时触发
void registerProcessingTimeTimer(long time);
// 注册事件时间定时器当水位线超过 time 时触发
void registerEventTimeTimer(long time);
// 删除触发时间为 time 的处理时间定时器
void deleteProcessingTimeTimer(long time);
// 删除触发时间为 time 的事件时间定时器
void deleteEventTimeTimer(long time);这些方法总体上可以分为两大类根据定义的时间语义的不同分为基于处理时间的和基于事件时间的。对应的操作主要有三个即获取当前时间、注册定时器、删除定时器。 
基于处理时间的分区处理函数 
基本使用代码如下详细步骤见代码注释 
public class ProcessingTimeTimerDemo {public static void main(String[] args) throws Exception {// 1. 环境准备StreamExecutionEnvironment environment  StreamExecutionEnvironment.getExecutionEnvironment();environment.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);environment.setParallelism(1);// 2. 加载数据源并设置水位线environment// 2.1 加载数据源.addSource(new EventSource())// 处理时间语义不需要分配时间戳和 watermark// 2.2 按键分区这里将所有数据分配到同一区// 使用定时器必须基于 KeyedStream.keyBy(event - true)// 2.3 设置按键分区处理函数.process(new KeyedProcessFunctionBoolean, Event, Object() {Overridepublic void processElement(Event event, KeyedProcessFunctionBoolean, Event, Object.Context context, CollectorObject collector) throws Exception {long currTs  context.timerService().currentProcessingTime();collector.collect(数据到达到达时间  new Timestamp(currTs));// 注册一个 10 秒后的定时器context.timerService().registerProcessingTimeTimer(currTs  10 * 1000L);}Overridepublic void onTimer(long timestamp, KeyedProcessFunctionBoolean, Event, Object.OnTimerContext ctx, CollectorObject out) throws Exception {out.collect(定时器触发触发时间  new Timestamp(timestamp));}})// 2.4 执行打印.print();// 3. 执行程序environment.execute();}}基于事件时间的分区处理函数 
基本使用代码如下详细步骤见代码注释 
public class EventTimeTimerDemo {public static void main(String[] args) throws Exception {// 1. 环境准备StreamExecutionEnvironment environment  StreamExecutionEnvironment.getExecutionEnvironment();environment.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);environment.setParallelism(1);// 2. 加载数据源并设置水位线environment// 2.1 加载数据源.socketTextStream(XXX.XX.XX.XXX, 8080)// 2.2 对数据源进行简单处理封装成对象.map(new MapFunctionString, Event() {Overridepublic Event map(String s) throws Exception {String[] split  s.split(,);return new Event(split[0].trim(),split[1].trim(),Long.valueOf(split[2].trim()));}})// 2.3 获取时间戳、设置水位线.assignTimestampsAndWatermarks(WatermarkStrategy.EventforMonotonousTimestamps().withTimestampAssigner((SerializableTimestampAssignerEvent) (event, l) - event.timestamp))// 2.4 设置按键分区处理函数.keyBy(event - true)// 2.5 设置处理函数.process(new KeyedProcessFunctionBoolean, Event, String() {Overridepublic void processElement(Event event, KeyedProcessFunctionBoolean, Event, String.Context context, CollectorString collector) throws Exception {collector.collect(数据到达时间戳  context.timestamp());collector.collect(数据到达水位线  context.timerService().currentWatermark());// 注册一个 10 秒后的定时器context.timerService().registerEventTimeTimer(context.timestamp()  10 * 1000L);}Overridepublic void onTimer(long timestamp, KeyedProcessFunctionBoolean, Event, String.OnTimerContext ctx, CollectorString out) throws Exception {out.collect(定时器触发触发时间  timestamp);}})// 2.6 执行打印.print();// 3. 执行程序environment.execute();}}执行测试对应数据的输出以及定时器对应的数据分别用红色和黄色标注 窗口处理函数 ProcessWindowFunction 
关于窗口处理函数的使用在之前的Flink – Time and Window已经介绍过其基本的使用方法示例代码如下 
public class ProcessWindowDemo {public static void main(String[] args) throws Exception {// 1. 环境准备StreamExecutionEnvironment environment  StreamExecutionEnvironment.getExecutionEnvironment();environment.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);environment.setParallelism(1);// 2. 加载数据源并设置水位线SingleOutputStreamOperatorEvent stream  environment// 2.1 加载数据源.addSource(new EventSource())// 2.2 获取时间戳、设置水位线.assignTimestampsAndWatermarks(WatermarkStrategy.EventforBoundedOutOfOrderness(Duration.ZERO).withTimestampAssigner((SerializableTimestampAssignerEvent) (event, l) - event.timestamp));// 3. 数据处理及输出stream// 3.1 分区将所有数据发送到一个分区进行统计.keyBy(item - true)// 3.2 设置滚动事件时间窗口窗口大小为 10s.window(TumblingEventTimeWindows.of(Time.seconds(5)))// 3.3 定义窗口函数处理规则.process(new CustomProcessWindow())// 3.4 输出结果.print();// 4. 执行程序environment.execute();}public static class CustomProcessWindow extends ProcessWindowFunctionEvent, String, Boolean, TimeWindow {/*** 窗口函数处理规则窗口关闭时执行处理*/Overridepublic void process(Boolean aBoolean, ProcessWindowFunctionEvent, String, Boolean, TimeWindow.Context context,IterableEvent iterable, CollectorString collector) {// 创建用户统计SetHashSetString userSet  new HashSet();for (Event event: iterable) {userSet.add(event.user);}long start  context.window().getStart();long end  context.window().getEnd();// 定制输出内容collector.collect(窗口【  new TimeStamp(start)  ~  new TimeStamp(end) 】的独立访客数量为  userSet.size());}}}ProcessWindowFunction继承了AbstractRichFunction抽象类其存在 4 个类型参数按顺序分别为 IN即数据流中窗口函数输入的数据类型  OUT即窗口函数经过计算后输出的  KEY即数据中分区键 key 的类型  W即窗口的类型一般使用TimeWindow  
使用过程中需要实现抽象方法process()该方法也包含 4 个参数按序分别为 key分区字段  context当前窗口计算的上下文  elements窗口收集到的所有元素的可迭代集合  out用于发送数据输出结果的收集器  
应用案例 – Top N 
使用之前学习的各种方法可以实现对访问量 Top N 的 url 的计算使用到的实体类 EventUrlCount 代码如下 
Data
NoArgsConstructor
AllArgsConstructor
public class EventUrlCount {public String url;public Long count;public Long windowStart;public Long windowEnd;}业务实现代码如下 
public class TopNDemo {public static void main(String[] args) throws Exception {// 1. 配置环境StreamExecutionEnvironment environment  StreamExecutionEnvironment.getExecutionEnvironment();environment.setParallelism(1);// 2. 数据处理environment// 2.1 添加数据源.addSource(new EventSource())// 2.2 设置水位线.assignTimestampsAndWatermarks(WatermarkStrategy.EventforMonotonousTimestamps().withTimestampAssigner(new SerializableTimestampAssignerEvent() {Overridepublic long extractTimestamp(Event event, long l) {return event.timestamp;}}))// 2.3 按照 url 进行分区统计 10s 的时间窗口内各个 url 的访问量.keyBy(event - event.url)// 2.4 设置滑动窗口.window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))// 2.5 设置窗口处理逻辑.aggregate(new UrlCountAgg(), new UrlCountRes())// 2.6 按窗口结束时间进行分区统计相同时间窗口各 url 的访问量.keyBy(eventUrlCount - eventUrlCount.windowEnd)// 2.7 设置处理函数计算top n.process(new TopN(2))// 2.8 执行输出.print();// 3. 执行程序environment.execute();}/*** 自定义增量聚合*/public static class UrlCountAgg implements AggregateFunctionEvent, Long, Long {Overridepublic Long createAccumulator() {return 0L;}Overridepublic Long add(Event event, Long aLong) {return aLong  1;}Overridepublic Long getResult(Long aLong) {return aLong;}Overridepublic Long merge(Long aLong, Long acc1) {return null;}}/*** 自定义全窗口函数*/public static class UrlCountRes extends ProcessWindowFunctionLong, EventUrlCount, String, TimeWindow {Overridepublic void process(String s, ProcessWindowFunctionLong, EventUrlCount, String, TimeWindow.Context context,IterableLong iterable, CollectorEventUrlCount collector) throws Exception {collector.collect(new EventUrlCount(s,iterable.iterator().next(),context.window().getStart(),context.window().getEnd()));}}/*** 自定义处理函数计算 top n*/public static class TopN extends KeyedProcessFunctionLong, EventUrlCount, String {// 定义属性 nprivate final Integer n;// 定义状态列表private ListStateEventUrlCount urlCountListState;public TopN(Integer n) {this.n  n;}Overridepublic void open(Configuration parameters) throws Exception {// 从环境中获取状态列表urlCountListState  getRuntimeContext().getListState(new ListStateDescriptorEventUrlCount(event-url-count-list, Types.POJO(EventUrlCount.class)));}Overridepublic void processElement(EventUrlCount eventUrlCount, KeyedProcessFunctionLong, EventUrlCount, String.Context context,CollectorString collector) throws Exception {// 将数据保存至状态列表urlCountListState.add(eventUrlCount);// 设置定时器在窗口关闭 1s 后触发context.timerService().registerEventTimeTimer(context.getCurrentKey()  1L);}Overridepublic void onTimer(long timestamp, KeyedProcessFunctionLong, EventUrlCount, String.OnTimerContext ctx, CollectorString out) throws Exception {// 将数据从状态列表取出并放入 ArrayList方便排序ArrayListEventUrlCount urlCountArrayList  new ArrayList();for (EventUrlCount eventUrlCount: urlCountListState.get()) {urlCountArrayList.add(eventUrlCount);}// 清空状态列表urlCountListState.clear();// 执行排序urlCountArrayList.sort(new ComparatorEventUrlCount() {Overridepublic int compare(EventUrlCount o1, EventUrlCount o2) {return o2.count.intValue() - o1.count.intValue();}});// 组装结果并输出StringBuilder result  new StringBuilder();result.append(\n);result.append(窗口结束时间).append(new Timestamp(timestamp - 1)).append(\n);for (int i  0; i  this.n; i) {EventUrlCount eventUrlCount  urlCountArrayList.get(i);String info  No.  (i  1)     url  eventUrlCount.url    浏览量  eventUrlCount.count  \n;result.append(info);}result.append(\n);out.collect(result.toString());}}}我们在上面的代码中使用ListState。在open()方法中初始化了列表状态变量初始化的时候使用了ListStateDescriptor描述符这个描述符用来告诉 Flink 列表状态变量的名字和类型。列表状态变量是单例也就是说只会被实例化一次。这个列表状态变量的作用域是当前 key 所对应的逻辑分区。可以使用add()方法向列表状态变量中添加数据使用get()方法读取列表状态变量中的所有元素。 文章转载自: http://www.morning.rdkt.cn.gov.cn.rdkt.cn http://www.morning.tymwx.cn.gov.cn.tymwx.cn http://www.morning.mszwg.cn.gov.cn.mszwg.cn http://www.morning.hhpkb.cn.gov.cn.hhpkb.cn http://www.morning.ysgnb.cn.gov.cn.ysgnb.cn http://www.morning.pxlql.cn.gov.cn.pxlql.cn http://www.morning.kchwr.cn.gov.cn.kchwr.cn http://www.morning.pfcrq.cn.gov.cn.pfcrq.cn http://www.morning.kztpn.cn.gov.cn.kztpn.cn http://www.morning.zqbrd.cn.gov.cn.zqbrd.cn http://www.morning.rxpp.cn.gov.cn.rxpp.cn http://www.morning.hqqpy.cn.gov.cn.hqqpy.cn http://www.morning.gsjzs.cn.gov.cn.gsjzs.cn http://www.morning.hfrbt.cn.gov.cn.hfrbt.cn http://www.morning.gxfzrb.com.gov.cn.gxfzrb.com http://www.morning.smpmn.cn.gov.cn.smpmn.cn http://www.morning.blqgc.cn.gov.cn.blqgc.cn http://www.morning.rntyn.cn.gov.cn.rntyn.cn http://www.morning.zcwwb.cn.gov.cn.zcwwb.cn http://www.morning.qtrlh.cn.gov.cn.qtrlh.cn http://www.morning.ryxdr.cn.gov.cn.ryxdr.cn http://www.morning.skscy.cn.gov.cn.skscy.cn http://www.morning.sskkf.cn.gov.cn.sskkf.cn http://www.morning.rltsx.cn.gov.cn.rltsx.cn http://www.morning.dxqwm.cn.gov.cn.dxqwm.cn http://www.morning.mxmtt.cn.gov.cn.mxmtt.cn http://www.morning.gtcym.cn.gov.cn.gtcym.cn http://www.morning.jzfxk.cn.gov.cn.jzfxk.cn http://www.morning.grjh.cn.gov.cn.grjh.cn http://www.morning.dfrenti.com.gov.cn.dfrenti.com http://www.morning.jrqw.cn.gov.cn.jrqw.cn http://www.morning.pxtgf.cn.gov.cn.pxtgf.cn http://www.morning.xwbwm.cn.gov.cn.xwbwm.cn http://www.morning.qxdrw.cn.gov.cn.qxdrw.cn http://www.morning.jntcr.cn.gov.cn.jntcr.cn http://www.morning.wtbzt.cn.gov.cn.wtbzt.cn http://www.morning.lzdbb.cn.gov.cn.lzdbb.cn http://www.morning.bmts.cn.gov.cn.bmts.cn http://www.morning.tbwsl.cn.gov.cn.tbwsl.cn http://www.morning.bwhcl.cn.gov.cn.bwhcl.cn http://www.morning.rjmd.cn.gov.cn.rjmd.cn http://www.morning.fnssm.cn.gov.cn.fnssm.cn http://www.morning.rmfh.cn.gov.cn.rmfh.cn http://www.morning.tnyanzou.com.gov.cn.tnyanzou.com http://www.morning.woyoua.com.gov.cn.woyoua.com http://www.morning.cryb.cn.gov.cn.cryb.cn http://www.morning.wbxtx.cn.gov.cn.wbxtx.cn http://www.morning.xlbtz.cn.gov.cn.xlbtz.cn http://www.morning.bnfrj.cn.gov.cn.bnfrj.cn http://www.morning.rnrwq.cn.gov.cn.rnrwq.cn http://www.morning.nmbbt.cn.gov.cn.nmbbt.cn http://www.morning.lchtb.cn.gov.cn.lchtb.cn http://www.morning.jwgmx.cn.gov.cn.jwgmx.cn http://www.morning.mtbth.cn.gov.cn.mtbth.cn http://www.morning.wylpy.cn.gov.cn.wylpy.cn http://www.morning.lwlnw.cn.gov.cn.lwlnw.cn http://www.morning.nlnmy.cn.gov.cn.nlnmy.cn http://www.morning.czrcf.cn.gov.cn.czrcf.cn http://www.morning.zkdbx.cn.gov.cn.zkdbx.cn http://www.morning.stcds.cn.gov.cn.stcds.cn http://www.morning.wjdgx.cn.gov.cn.wjdgx.cn http://www.morning.jbfjp.cn.gov.cn.jbfjp.cn http://www.morning.llxyf.cn.gov.cn.llxyf.cn http://www.morning.drfcj.cn.gov.cn.drfcj.cn http://www.morning.c7491.cn.gov.cn.c7491.cn http://www.morning.mtrfz.cn.gov.cn.mtrfz.cn http://www.morning.nqgjn.cn.gov.cn.nqgjn.cn http://www.morning.dfffm.cn.gov.cn.dfffm.cn http://www.morning.gtkyr.cn.gov.cn.gtkyr.cn http://www.morning.qmbpy.cn.gov.cn.qmbpy.cn http://www.morning.sjpht.cn.gov.cn.sjpht.cn http://www.morning.xkzmz.cn.gov.cn.xkzmz.cn http://www.morning.mcbqq.cn.gov.cn.mcbqq.cn http://www.morning.qwpdl.cn.gov.cn.qwpdl.cn http://www.morning.rwcw.cn.gov.cn.rwcw.cn http://www.morning.swimstaracademy.cn.gov.cn.swimstaracademy.cn http://www.morning.pwgzh.cn.gov.cn.pwgzh.cn http://www.morning.wjrq.cn.gov.cn.wjrq.cn http://www.morning.kmqjx.cn.gov.cn.kmqjx.cn http://www.morning.rnqrl.cn.gov.cn.rnqrl.cn