当前位置: 首页 > news >正文

做网站如何屏蔽中国的ip请简述企业网站的推广阶段及其特点

做网站如何屏蔽中国的ip,请简述企业网站的推广阶段及其特点,开发一个外卖app需要多少钱,博客的网站页面设计yelp数据集是研究B2C业态的一个很好的数据集#xff0c;要识别潜在的热门商家是一个多维度的分析过程#xff0c;涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家 用户评分和评论分析 评分均值: 商家的平均评分是反映其…yelp数据集是研究B2C业态的一个很好的数据集要识别潜在的热门商家是一个多维度的分析过程涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家 用户评分和评论分析 评分均值: 商家的平均评分是反映其受欢迎程度的重要指标。较高的平均评分通常意味着顾客满意度高从而可能成为热门商家。评论数量: 评论数量可以反映商家的活跃度和用户的参与程度。评论数量多的商家更可能受到广泛关注。 用户活跃度 用户评分行为: 分析活跃用户频繁评分的用户对商家的评分可以识别出哪些商家在用户群体中更受欢迎。用户影响力: 一些用户的评分会对其他用户的选择产生较大影响例如社交媒体影响者。识别这些高影响力用户对商家的评分可以帮助识别潜在热门商家。 社交网络分析 用户与商家的关系网络: 使用图神经网络等算法分析用户与商家之间的关系。商家与许多用户有互动且用户在网络中有较高影响力的商家可能会被视为热门商家。社区发现: 通过分析用户和商家之间的关系网络识别出相似用户群体进而识别出在这些群体中受欢迎的商家。 多维度评价 综合评价: 结合多个指标如评分、评论数、用户活跃度、地理位置等使用加权方法或多指标决策模型来综合评估商家的受欢迎程度。 使用的文件 yelp_academic_dataset_business.json: 包含商家的基本信息如商家 ID、名称、类别、位置等。 yelp_academic_dataset_review.json: 包含用户对商家的评论及评分可以用来分析商家的受欢迎程度和用户的行为。 yelp_academic_dataset_user.json: 包含用户的基本信息比如用户 ID、注册时间、评价数量等可以用来分析用户的活跃度和影响力。 通过图神经网络GNN来识别商家的影响力 先加载必要的库并读取数据文件 import pandas as pd import json# 读取数据 with open(yelp_academic_dataset_business.json, r) as f:businesses pd.DataFrame([json.loads(line) for line in f])with open(yelp_academic_dataset_review.json, r) as f:reviews pd.DataFrame([json.loads(line) for line in f])with open(yelp_academic_dataset_user.json, r) as f:users pd.DataFrame([json.loads(line) for line in f]) 清洗数据以提取有用的信息 # 过滤出需要的商家和用户数据 businesses businesses[[business_id, name, categories, city, state, review_count, stars]] reviews reviews[[user_id, business_id, stars]] users users[[user_id, review_count, average_stars]]# 处理类别数据 businesses[categories] businesses[categories].str.split(, ).apply(lambda x: x[0] if x else None) 构建商家和用户之间的图节点为商家和用户边为用户对商家的评分。 edges []for _, row in reviews.iterrows():if row[user_id] in node_mapping and row[business_id] in node_mapping:edges.append([node_mapping[row[user_id]], node_mapping[row[business_id]]])edge_index torch.tensor(edges, dtypetorch.long).t().contiguous()return node_mapping, edge_index, total_nodes 我们可以通过以下方式计算商家的影响力 用户评分的平均值: 表示商家的受欢迎程度。评论数: 提供商家影响力的直观指标。 business_reviews reviews.groupby(business_id).agg({stars: [mean, count] }).reset_index() business_reviews.columns [business_id, average_rating, review_count]# 合并商家信息和评论信息 merged_data businesses.merge(business_reviews, onbusiness_id, howleft)# 3. 目标变量定义 # 定义热门商家的标准 merged_data[is_popular] ((merged_data[average_rating] 4.0) (merged_data[review_count] 10)).astype(int) 使用 GNN 进一步分析商家的影响力 可以构建 GNN 模型并训练。以下是 GNN 模型的基本示例使用 PyTorch Geometric class GNNModel(torch.nn.Module):def __init__(self, num_node_features):super(GNNModel, self).__init__()self.conv1 GCNConv(num_node_features, 64)self.conv2 GCNConv(64, 32)self.conv3 GCNConv(32, 16)self.fc torch.nn.Linear(16, 1)self.dropout torch.nn.Dropout(0.3)def forward(self, x, edge_index):x F.relu(self.conv1(x, edge_index))x self.dropout(x)x F.relu(self.conv2(x, edge_index))x self.dropout(x)x F.relu(self.conv3(x, edge_index))x self.fc(x)return x 使用模型的输出嵌入来分析商家之间的相似度识别潜在的热门商家。 print(Making predictions...)model.eval()with torch.no_grad():predictions torch.sigmoid(model(data.x.to(device), data.edge_index.to(device))).cpu()# 将预测结果添加到数据框merged_data[predicted_popularity] 0.0for _, row in merged_data.iterrows():if row[business_id] in node_mapping:idx node_mapping[row[business_id]]merged_data.loc[row.name, predicted_popularity] predictions[idx].item()# 输出潜在热门商家potential_hot merged_data[(merged_data[predicted_popularity] 0.5) (merged_data[is_popular] 0)].sort_values(predicted_popularity, ascendingFalse)print(\nPotential Hot Businesses:)print(potential_hot[[name, average_rating, review_count, predicted_popularity]].head()) 使用上面定义流程跑一下训练, 报错了 Traceback (most recent call last):   File /opt/miniconda3/envs/lora/lib/python3.10/site-packages/pandas/core/indexes/base.py, line 3805, in get_loc     return self._engine.get_loc(casted_key)   File index.pyx, line 167, in pandas._libs.index.IndexEngine.get_loc   File index.pyx, line 196, in pandas._libs.index.IndexEngine.get_loc   File pandas/_libs/hashtable_class_helper.pxi, line 7081, in pandas._libs.hashtable.PyObjectHashTable.get_item   File pandas/_libs/hashtable_class_helper.pxi, line 7089, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: review_count   把print(merged_data, merged_data) 加上再试下 [150346 rows x 16 columns] Index([business_id, name, address, city, state, postal_code,        latitude, longitude, stars, review_count_x, is_open,        attributes, categories, hours, average_rating,        review_count_y],       dtypeobject)  review_count 列被重命名为 review_count_x 和 review_count_y。这通常是因为在合并过程中两个 DataFrame 中都存在 review_count 列。为了继续进行需要选择合适的列来作为评论数量的依据。选择 review_count_x 或 review_count_y: 通常review_count_x 是从 businesses DataFrame 中来的而 review_count_y 是从 business_reviews DataFrame 中来的。 代码修改下 import torch import pandas as pd import numpy as np import torch.nn.functional as F from torch_geometric.data import Data from torch_geometric.nn import GCNConv from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split# 1. 数据加载 def load_data():businesses pd.read_json(yelp_academic_dataset_business.json, linesTrue)reviews pd.read_json(yelp_academic_dataset_review.json, linesTrue)users pd.read_json(yelp_academic_dataset_user.json, linesTrue)return businesses, reviews, users# 2. 数据预处理 def preprocess_data(businesses, reviews):# 聚合评论数据business_reviews reviews.groupby(business_id).agg({stars: [mean, count],useful: sum,funny: sum,cool: sum}).reset_index()# 修复列名business_reviews.columns [business_id, average_rating, review_count,total_useful, total_funny, total_cool]# 合并商家信息# 删除businesses中的review_count列如果存在if review_count in businesses.columns:businesses businesses.drop(review_count, axis1)# 合并商家信息merged_data businesses.merge(business_reviews, onbusiness_id, howleft)# 填充缺失值merged_data merged_data.fillna(0)return merged_data# 3. 特征工程 def engineer_features(merged_data):# 确保使用正确的列名创建特征merged_data[engagement_score] (merged_data[total_useful] merged_data[total_funny] merged_data[total_cool]) / (merged_data[review_count] 1) # 加1避免除零# 定义热门商家merged_data[is_popular] ((merged_data[average_rating] 4.0) (merged_data[review_count] merged_data[review_count].quantile(0.75))).astype(int)return merged_data# 4. 图构建 def build_graph(merged_data, reviews):# 创建节点映射business_ids merged_data[business_id].unique()user_ids reviews[user_id].unique()# 修改索引映射确保从0开始node_mapping {user_id: i for i, user_id in enumerate(user_ids)}# 商家节点的索引接续用户节点的索引business_start_idx len(user_ids)node_mapping.update({business_id: i business_start_idx for i, business_id in enumerate(business_ids)})# 获取节点总数total_nodes len(user_ids) len(business_ids)# 创建边edges []for _, row in reviews.iterrows():if row[user_id] in node_mapping and row[business_id] in node_mapping:edges.append([node_mapping[row[user_id]], node_mapping[row[business_id]]])edge_index torch.tensor(edges, dtypetorch.long).t().contiguous()return node_mapping, edge_index, total_nodesdef prepare_node_features(merged_data, node_mapping, num_user_nodes, total_nodes):feature_cols [average_rating, review_count, engagement_score]# 确保所有特征列都是数值类型for col in feature_cols:merged_data[col] merged_data[col].astype(float)# 标准化特征scaler StandardScaler()merged_data[feature_cols] scaler.fit_transform(merged_data[feature_cols])# 创建特征矩阵使用总节点数num_features len(feature_cols)x torch.zeros(total_nodes, num_features, dtypetorch.float)# 用户节点特征使用平均值mean_values merged_data[feature_cols].mean().values.astype(np.float32)x[:num_user_nodes] torch.tensor(mean_values, dtypetorch.float)# 商家节点特征for _, row in merged_data.iterrows():if row[business_id] in node_mapping:idx node_mapping[row[business_id]]feature_values row[feature_cols].values.astype(np.float32)if not np.isfinite(feature_values).all():print(f警告: 发现无效值 {feature_values})feature_values np.nan_to_num(feature_values, 0)x[idx] torch.tensor(feature_values, dtypetorch.float)return xdef main():print(Starting the program...)# 设置设备device torch.device(cuda if torch.cuda.is_available() else cpu)print(fUsing device: {device})# 加载数据print(Loading data...)businesses, reviews, users load_data()# 预处理数据print(Preprocessing data...)merged_data preprocess_data(businesses, reviews)merged_data engineer_features(merged_data)# 构建图print(Building graph...)node_mapping, edge_index, total_nodes build_graph(merged_data, reviews)num_user_nodes len(reviews[user_id].unique())# 打印节点信息print(fTotal nodes: {total_nodes})print(fUser nodes: {num_user_nodes})print(fBusiness nodes: {total_nodes - num_user_nodes})print(fMax node index in mapping: {max(node_mapping.values())})# 准备特征print(Preparing node features...)x prepare_node_features(merged_data, node_mapping, num_user_nodes, total_nodes)# 准备标签print(Preparing labels...)labels torch.zeros(total_nodes)business_mask torch.zeros(total_nodes, dtypetorch.bool)for _, row in merged_data.iterrows():if row[business_id] in node_mapping:idx node_mapping[row[business_id]]labels[idx] row[is_popular]business_mask[idx] True# 创建图数据对象data Data(xx, edge_indexedge_index)# 初始化模型print(Initializing model...)model GNNModel(num_node_featuresx.size(1)).to(device)# 训练模型print(Training model...)train_model(model, data, labels, business_mask, device)# 预测print(Making predictions...)model.eval()with torch.no_grad():predictions torch.sigmoid(model(data.x.to(device), data.edge_index.to(device))).cpu()# 将预测结果添加到数据框merged_data[predicted_popularity] 0.0for _, row in merged_data.iterrows():if row[business_id] in node_mapping:idx node_mapping[row[business_id]]merged_data.loc[row.name, predicted_popularity] predictions[idx].item()# 输出潜在热门商家potential_hot merged_data[(merged_data[predicted_popularity] 0.5) (merged_data[is_popular] 0)].sort_values(predicted_popularity, ascendingFalse)print(\nPotential Hot Businesses:)print(potential_hot[[name, average_rating, review_count, predicted_popularity]].head())# 6. GNN模型定义 class GNNModel(torch.nn.Module):def __init__(self, num_node_features):super(GNNModel, self).__init__()self.conv1 GCNConv(num_node_features, 64)self.conv2 GCNConv(64, 32)self.conv3 GCNConv(32, 16)self.fc torch.nn.Linear(16, 1)self.dropout torch.nn.Dropout(0.3)def forward(self, x, edge_index):x F.relu(self.conv1(x, edge_index))x self.dropout(x)x F.relu(self.conv2(x, edge_index))x self.dropout(x)x F.relu(self.conv3(x, edge_index))x self.fc(x)return x# 7. 训练函数 def train_model(model, data, labels, business_mask, device, epochs100):optimizer torch.optim.Adam(model.parameters(), lr0.01, weight_decay5e-4)criterion torch.nn.BCEWithLogitsLoss()model.train()for epoch in range(epochs):optimizer.zero_grad()out model(data.x.to(device), data.edge_index.to(device))loss criterion(out[business_mask], labels[business_mask].unsqueeze(1).to(device))loss.backward()optimizer.step()print(fEpoch [{epoch 1}/{epochs}], Loss: {loss.item():.4f})if __name__ __main__:main() 开始正式训练先按照epoch100做迭代训练测试loss向收敛方向滑动 识别出热门店铺 Potential Hot Businesses:                                    name  average_rating  review_count  predicted_popularity 100024              Mothers Restaurant       -0.154731     41.821089              0.999941 31033                       Royal House        0.207003     40.953749              0.999933 113983             Pats King of Steaks       -0.361171     34.103369              0.999805 64541   Felixs Restaurant Oyster Bar        0.389155     32.023360              0.999725 42331                        Gumbo Shop        0.340872     31.517411              0.999701
文章转载自:
http://www.morning.gprzp.cn.gov.cn.gprzp.cn
http://www.morning.wcft.cn.gov.cn.wcft.cn
http://www.morning.shawls.com.cn.gov.cn.shawls.com.cn
http://www.morning.vjwkb.cn.gov.cn.vjwkb.cn
http://www.morning.hnrls.cn.gov.cn.hnrls.cn
http://www.morning.jrkzk.cn.gov.cn.jrkzk.cn
http://www.morning.wkws.cn.gov.cn.wkws.cn
http://www.morning.fwmln.cn.gov.cn.fwmln.cn
http://www.morning.krzrg.cn.gov.cn.krzrg.cn
http://www.morning.rnygs.cn.gov.cn.rnygs.cn
http://www.morning.zqzzn.cn.gov.cn.zqzzn.cn
http://www.morning.rqsr.cn.gov.cn.rqsr.cn
http://www.morning.lqlhw.cn.gov.cn.lqlhw.cn
http://www.morning.wjhpg.cn.gov.cn.wjhpg.cn
http://www.morning.pmbcr.cn.gov.cn.pmbcr.cn
http://www.morning.lzqtn.cn.gov.cn.lzqtn.cn
http://www.morning.jkftn.cn.gov.cn.jkftn.cn
http://www.morning.ylyzk.cn.gov.cn.ylyzk.cn
http://www.morning.mxftp.com.gov.cn.mxftp.com
http://www.morning.gxfpk.cn.gov.cn.gxfpk.cn
http://www.morning.wxlzr.cn.gov.cn.wxlzr.cn
http://www.morning.jprrh.cn.gov.cn.jprrh.cn
http://www.morning.cbmqq.cn.gov.cn.cbmqq.cn
http://www.morning.fwjfh.cn.gov.cn.fwjfh.cn
http://www.morning.xnfg.cn.gov.cn.xnfg.cn
http://www.morning.xwqxz.cn.gov.cn.xwqxz.cn
http://www.morning.rmfw.cn.gov.cn.rmfw.cn
http://www.morning.rcrnw.cn.gov.cn.rcrnw.cn
http://www.morning.mzhhr.cn.gov.cn.mzhhr.cn
http://www.morning.qmxsx.cn.gov.cn.qmxsx.cn
http://www.morning.dhrbj.cn.gov.cn.dhrbj.cn
http://www.morning.thlzt.cn.gov.cn.thlzt.cn
http://www.morning.ccsdx.cn.gov.cn.ccsdx.cn
http://www.morning.jjhrj.cn.gov.cn.jjhrj.cn
http://www.morning.fstdf.cn.gov.cn.fstdf.cn
http://www.morning.snjpj.cn.gov.cn.snjpj.cn
http://www.morning.ngmjn.cn.gov.cn.ngmjn.cn
http://www.morning.pszw.cn.gov.cn.pszw.cn
http://www.morning.lsfzq.cn.gov.cn.lsfzq.cn
http://www.morning.tpbhf.cn.gov.cn.tpbhf.cn
http://www.morning.jqsyp.cn.gov.cn.jqsyp.cn
http://www.morning.tzzfy.cn.gov.cn.tzzfy.cn
http://www.morning.xjbtb.cn.gov.cn.xjbtb.cn
http://www.morning.snxbf.cn.gov.cn.snxbf.cn
http://www.morning.tqsmg.cn.gov.cn.tqsmg.cn
http://www.morning.nbqwr.cn.gov.cn.nbqwr.cn
http://www.morning.nxwk.cn.gov.cn.nxwk.cn
http://www.morning.zfhzx.cn.gov.cn.zfhzx.cn
http://www.morning.jfwbr.cn.gov.cn.jfwbr.cn
http://www.morning.ryglh.cn.gov.cn.ryglh.cn
http://www.morning.xrpwk.cn.gov.cn.xrpwk.cn
http://www.morning.czrcf.cn.gov.cn.czrcf.cn
http://www.morning.fnwny.cn.gov.cn.fnwny.cn
http://www.morning.xhklb.cn.gov.cn.xhklb.cn
http://www.morning.rbnp.cn.gov.cn.rbnp.cn
http://www.morning.fsbns.cn.gov.cn.fsbns.cn
http://www.morning.xcjwm.cn.gov.cn.xcjwm.cn
http://www.morning.joinyun.com.gov.cn.joinyun.com
http://www.morning.fy974.cn.gov.cn.fy974.cn
http://www.morning.gzgwn.cn.gov.cn.gzgwn.cn
http://www.morning.elsemon.com.gov.cn.elsemon.com
http://www.morning.gyqnp.cn.gov.cn.gyqnp.cn
http://www.morning.frtb.cn.gov.cn.frtb.cn
http://www.morning.ydnx.cn.gov.cn.ydnx.cn
http://www.morning.ccpnz.cn.gov.cn.ccpnz.cn
http://www.morning.hjwkq.cn.gov.cn.hjwkq.cn
http://www.morning.rlwgn.cn.gov.cn.rlwgn.cn
http://www.morning.fhyhr.cn.gov.cn.fhyhr.cn
http://www.morning.lpmdy.cn.gov.cn.lpmdy.cn
http://www.morning.bswnf.cn.gov.cn.bswnf.cn
http://www.morning.rwjtf.cn.gov.cn.rwjtf.cn
http://www.morning.kspfq.cn.gov.cn.kspfq.cn
http://www.morning.gjmll.cn.gov.cn.gjmll.cn
http://www.morning.hdqqr.cn.gov.cn.hdqqr.cn
http://www.morning.mrfjr.cn.gov.cn.mrfjr.cn
http://www.morning.pftjj.cn.gov.cn.pftjj.cn
http://www.morning.ityi666.cn.gov.cn.ityi666.cn
http://www.morning.yqfdl.cn.gov.cn.yqfdl.cn
http://www.morning.bqpgq.cn.gov.cn.bqpgq.cn
http://www.morning.nsncq.cn.gov.cn.nsncq.cn
http://www.tj-hxxt.cn/news/258474.html

相关文章:

  • 怎么设计公司的网站模板个人网站建设基础与实例
  • 网站设计基础语言不包括这些内容软件工程学什么及就业前景
  • 网站建设价格是哪些方面决定的快速生成html模板
  • 清空回收站 wordpress中国室内设计任务网
  • 怎么查网站建设是哪家公司为什么wordpress主题中字体不统一
  • 在国外做电商网站网站建设技术外文
  • 米枫网站怎么做分页wordpress如何修改页头
  • 崇文手机网站建设湖南网站制作方案
  • 东莞seo网站推广建设阜阳网页定制
  • 网站建设招聘信息wordpress 询价记录
  • 建设网站的岗位蒙古文网站建设工作计划
  • 网站排名优化推广公司wordpress 主题根目录
  • 国外美容网站网站域名包括哪些
  • 怎么自己做淘宝客网站吗鲜花网站开发背景
  • 东莞做棋牌网站建设湖南seo推广方法
  • 简易蜘蛛池网站开发企业代运营公司
  • WordPress移动站应用程序安装下载
  • 建设招标网 手机官方网站建设介绍网站
  • 个人做淘宝客网站要备案吗wordpress 本地搭建
  • 建立网站的正确方法越秀网站建设优化
  • 中秋网页设计素材网站不知道怎么选
  • 个人公司网站搭建主题公园网站建设
  • 网站服务器类型查询创立网站成本
  • 知名的网站开发公司杭州网站建设app
  • wordpress做的外贸网站6做网站怎么学
  • 重庆微信营销网站建设营销公司官网
  • 上饶市建设监督网站在一个空间建两个网站
  • 胶南市城乡建设局网站成都做网站优化价格
  • 常州做网站信息商城插件wordpress
  • 哪些网站可以找到做海报的素材建网站公司深