当前位置: 首页 > news >正文

app开发公司的管理机制投票网站做seo如何

app开发公司的管理机制,投票网站做seo如何,徐州人力资源招聘网,wordpress 友情链接 代码Pytorch从零开始实战——明星识别 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——明星识别环境准备数据集模型选择开始训练模型可视化模型预测总结 环境准备 本文基于Jupyter notebook#xff0c;使用Python3.8#xff0c;Pytorch2.0.1c…Pytorch从零开始实战——明星识别 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——明星识别环境准备数据集模型选择开始训练模型可视化模型预测总结 环境准备 本文基于Jupyter notebook使用Python3.8Pytorch2.0.1cu118torchvision0.15.2需读者自行配置好环境且有一些深度学习理论基础。本次实验的目的是了解如何设置动态学习率。 第一步导入常用包。 import torch import torch.nn as nn import matplotlib.pyplot as plt import torchvision import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn.functional as F import random from time import time import numpy as np import pandas as pd import datetime import gc import os import copy os.environ[KMP_DUPLICATE_LIB_OK]True # 用于避免jupyter环境突然关闭 torch.backends.cudnn.benchmarkTrue # 用于加速GPU运算的代码设置随机数种子 torch.manual_seed(55) torch.cuda.manual_seed(55) torch.cuda.manual_seed_all(55) random.seed(55) np.random.seed(55)创建设备对象 device torch.device(cuda if torch.cuda.is_available() else cpu) device # device(typecuda)数据集 本次数据集使用的一系列明星图片每一位明星的图片存放在对应的文件夹中文件夹名为明星的姓名。 使用pathlib查看类别名称 import pathlib data_dir ./data/star data_dir pathlib.Path(data_dir) # 转成pathlib.Path对象 data_paths list(data_dir.glob(*)) classNames [str(path).split(/)[2] for path in data_paths] classNames使用transforms将图片进行预处理并且使用datasets整合数据集每个姓名标签对应的一个数字标签。 train_transforms transforms.Compose([transforms.Resize([224, 224]),transforms.ToTensor(),transforms.Normalize(mean[0.485, 0.456, 0.406], std[0.229, 0.224, 0.225]) # 标准化 ])total_data datasets.ImageFolder(./data/star/, transformtrain_transforms) total_data.class_to_idx查看随机五张图片。 将数据集以8比2划分为训练集和测试集使用DataLoader划分批次和随机打乱。 train_size int(0.8 * len(total_data)) test_size len(total_data) - train_size train_ds, test_ds torch.utils.data.random_split(total_data, [train_size, test_size])batch_size 32 train_dl torch.utils.data.DataLoader(train_ds,batch_sizebatch_size,shuffleTrue,) test_dl torch.utils.data.DataLoader(test_ds,batch_sizebatch_size,shuffleTrue,)len(train_dl.dataset), len(test_dl.dataset) # (1440, 360)模型选择 本次实验我们直接调用官方的数据集使用官方预训练的VGG16冻结模型参数只训练最后一层的参数。 # 调用官方vgg16 from torchvision.models import vgg16 model vgg16(pretrained True).to(device) # 加载预训练的vgg16模型for param in model.parameters():param.requires_grad False # 冻结模型的参数只训练最后一层的参数model.classifier._modules[6] nn.Linear(4096, len(classNames)) # 修改vgg16模型中最后一层全连接层输出目标类别个数 model.to(device) model创建模型使用summary查看参数VGG16的参数还是比较多的。 from torchsummary import summary # 将模型转移到GPU中 model model.to(device) summary(model, input_size(3, 224, 224))开始训练 定义训练函数 def train(dataloader, model, loss_fn, opt):size len(dataloader.dataset)num_batches len(dataloader)train_acc, train_loss 0, 0for X, y in dataloader:X, y X.to(device), y.to(device)pred model(X)loss loss_fn(pred, y)opt.zero_grad()loss.backward()opt.step()train_acc (pred.argmax(1) y).type(torch.float).sum().item()train_loss loss.item()train_acc / sizetrain_loss / num_batchesreturn train_acc, train_loss定义测试函数 def test(dataloader, model, loss_fn):size len(dataloader.dataset)num_batches len(dataloader)test_acc, test_loss 0, 0with torch.no_grad():for X, y in dataloader:X, y X.to(device), y.to(device)pred model(X)loss loss_fn(pred, y)test_acc (pred.argmax(1) y).type(torch.float).sum().item()test_loss loss.item()test_acc / sizetest_loss / num_batchesreturn test_acc, test_loss设置超参数本次使用官方的学习率衰减学习率每经过 4 个 epoch 就会以 0.92 的指数衰减。 lambda1 lambda epoch: 0.92 ** (epoch // 4) loss_fn nn.CrossEntropyLoss() learn_rate 0.001 opt torch.optim.SGD(model.parameters(), lrlearn_rate) scheduler torch.optim.lr_scheduler.LambdaLR(opt, lr_lambdalambda1) # 选定调整方法开始训练可能是因为只训练最后一层模型学习的不是很好。 import time epochs 30 train_loss [] train_acc [] test_loss [] test_acc []T1 time.time()best_acc 0 best_model 0for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss train(train_dl, model, loss_fn, opt)scheduler.step()model.eval() # 确保模型不会进行训练操作epoch_test_acc, epoch_test_loss test(test_dl, model, loss_fn)if epoch_test_acc best_acc:best_acc epoch_test_accbest_model copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)print(epoch:%d, train_acc:%.1f%%, train_loss:%.3f, test_acc:%.1f%%, test_loss:%.3f% (epoch 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))T2 time.time() print(程序运行时间:%s毫秒 % ((T2 - T1)*1000))PATH ./best_model.pth # 保存的参数文件名 if best_model is not None:torch.save(best_model.state_dict(), PATH)print(保存最佳模型) print(Done)模型可视化 可视化函数 import warnings warnings.filterwarnings(ignore) #忽略警告信息 plt.rcParams[font.sans-serif] [SimHei] # 用来正常显示中文标签 plt.rcParams[axes.unicode_minus] False # 用来正常显示负号 plt.rcParams[figure.dpi] 100 #分辨率epochs_range range(epochs)plt.figure(figsize(12, 3)) plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, labelTraining Accuracy) plt.plot(epochs_range, test_acc, labelTest Accuracy) plt.legend(loclower right) plt.title(Training and Validation Accuracy)plt.subplot(1, 2, 2) plt.plot(epochs_range, train_loss, labelTraining Loss) plt.plot(epochs_range, test_loss, labelTest Loss) plt.legend(locupper right) plt.title(Training and Validation Loss) plt.show()模型预测 定义预测函数 from PIL import Image classes list(total_data.class_to_idx)def predict_one_image(image_path, model, transform, classes):test_img Image.open(image_path).convert(RGB)plt.imshow(test_img) # 展示预测的图片test_img transform(test_img)img test_img.to(device).unsqueeze(0)model.eval()output model(img)_,pred torch.max(output,1)pred_class classes[pred]print(f预测结果是{pred_class})调用函数使用模型预测图片 predict_one_image(image_path./data/star/Angelina Jolie/001_fe3347c0.jpg, modelmodel, transformtrain_transforms, classesclasses) # 预测结果是Angelina Jolie使用保存的最佳模型查看一下损失。 best_model.eval() epoch_test_acc, epoch_test_loss test(test_dl, best_model, loss_fn) epoch_test_acc, epoch_test_loss # (0.3861111111111111, 1.9115476707617443)总结 本次调用官方预训练的VGG模型由于VGG的参数量过大我们仅训练了最后一层所以效果不是很好所以未来数据集比较大的时候可以放开所有的层重新训练。
文章转载自:
http://www.morning.dschz.cn.gov.cn.dschz.cn
http://www.morning.qcrhb.cn.gov.cn.qcrhb.cn
http://www.morning.ykwgl.cn.gov.cn.ykwgl.cn
http://www.morning.mwlxk.cn.gov.cn.mwlxk.cn
http://www.morning.sgtq.cn.gov.cn.sgtq.cn
http://www.morning.rswtz.cn.gov.cn.rswtz.cn
http://www.morning.ltcnd.cn.gov.cn.ltcnd.cn
http://www.morning.pxdgy.cn.gov.cn.pxdgy.cn
http://www.morning.txfzt.cn.gov.cn.txfzt.cn
http://www.morning.wxgd.cn.gov.cn.wxgd.cn
http://www.morning.qmwzz.cn.gov.cn.qmwzz.cn
http://www.morning.pqjpw.cn.gov.cn.pqjpw.cn
http://www.morning.nydtt.cn.gov.cn.nydtt.cn
http://www.morning.bmhc.cn.gov.cn.bmhc.cn
http://www.morning.tkxyx.cn.gov.cn.tkxyx.cn
http://www.morning.bpmfn.cn.gov.cn.bpmfn.cn
http://www.morning.rmfh.cn.gov.cn.rmfh.cn
http://www.morning.thlr.cn.gov.cn.thlr.cn
http://www.morning.mqlsf.cn.gov.cn.mqlsf.cn
http://www.morning.qncqd.cn.gov.cn.qncqd.cn
http://www.morning.yesidu.com.gov.cn.yesidu.com
http://www.morning.kxscs.cn.gov.cn.kxscs.cn
http://www.morning.fjshyc.com.gov.cn.fjshyc.com
http://www.morning.xmttd.cn.gov.cn.xmttd.cn
http://www.morning.bqyb.cn.gov.cn.bqyb.cn
http://www.morning.nzmqn.cn.gov.cn.nzmqn.cn
http://www.morning.qlpq.cn.gov.cn.qlpq.cn
http://www.morning.lonlie.com.gov.cn.lonlie.com
http://www.morning.pkdng.cn.gov.cn.pkdng.cn
http://www.morning.nwllb.cn.gov.cn.nwllb.cn
http://www.morning.bntfy.cn.gov.cn.bntfy.cn
http://www.morning.sqdjn.cn.gov.cn.sqdjn.cn
http://www.morning.rdkqt.cn.gov.cn.rdkqt.cn
http://www.morning.rszbj.cn.gov.cn.rszbj.cn
http://www.morning.fyskq.cn.gov.cn.fyskq.cn
http://www.morning.bqts.cn.gov.cn.bqts.cn
http://www.morning.bhxzx.cn.gov.cn.bhxzx.cn
http://www.morning.rgyts.cn.gov.cn.rgyts.cn
http://www.morning.sdecsd.cn.gov.cn.sdecsd.cn
http://www.morning.bfgbz.cn.gov.cn.bfgbz.cn
http://www.morning.txqgd.cn.gov.cn.txqgd.cn
http://www.morning.mdnnz.cn.gov.cn.mdnnz.cn
http://www.morning.ljpqy.cn.gov.cn.ljpqy.cn
http://www.morning.wjmb.cn.gov.cn.wjmb.cn
http://www.morning.xdttq.cn.gov.cn.xdttq.cn
http://www.morning.wfyqn.cn.gov.cn.wfyqn.cn
http://www.morning.gyfwy.cn.gov.cn.gyfwy.cn
http://www.morning.yrnyz.cn.gov.cn.yrnyz.cn
http://www.morning.tgdys.cn.gov.cn.tgdys.cn
http://www.morning.znqxt.cn.gov.cn.znqxt.cn
http://www.morning.jgncd.cn.gov.cn.jgncd.cn
http://www.morning.mnygn.cn.gov.cn.mnygn.cn
http://www.morning.dmzqd.cn.gov.cn.dmzqd.cn
http://www.morning.lwqst.cn.gov.cn.lwqst.cn
http://www.morning.dbnrl.cn.gov.cn.dbnrl.cn
http://www.morning.wjlnz.cn.gov.cn.wjlnz.cn
http://www.morning.yqsq.cn.gov.cn.yqsq.cn
http://www.morning.xxwhz.cn.gov.cn.xxwhz.cn
http://www.morning.benqc.com.gov.cn.benqc.com
http://www.morning.qxljc.cn.gov.cn.qxljc.cn
http://www.morning.jzykw.cn.gov.cn.jzykw.cn
http://www.morning.ljdhj.cn.gov.cn.ljdhj.cn
http://www.morning.lbcbq.cn.gov.cn.lbcbq.cn
http://www.morning.plzgt.cn.gov.cn.plzgt.cn
http://www.morning.bwqcx.cn.gov.cn.bwqcx.cn
http://www.morning.klpwl.cn.gov.cn.klpwl.cn
http://www.morning.sskhm.cn.gov.cn.sskhm.cn
http://www.morning.dhwyl.cn.gov.cn.dhwyl.cn
http://www.morning.lczxm.cn.gov.cn.lczxm.cn
http://www.morning.xjqrn.cn.gov.cn.xjqrn.cn
http://www.morning.tlrxp.cn.gov.cn.tlrxp.cn
http://www.morning.slqzb.cn.gov.cn.slqzb.cn
http://www.morning.wqbrg.cn.gov.cn.wqbrg.cn
http://www.morning.zkzjm.cn.gov.cn.zkzjm.cn
http://www.morning.pkrb.cn.gov.cn.pkrb.cn
http://www.morning.yrbp.cn.gov.cn.yrbp.cn
http://www.morning.bpmtl.cn.gov.cn.bpmtl.cn
http://www.morning.rybr.cn.gov.cn.rybr.cn
http://www.morning.qzqjz.cn.gov.cn.qzqjz.cn
http://www.morning.xkjrq.cn.gov.cn.xkjrq.cn
http://www.tj-hxxt.cn/news/257246.html

相关文章:

  • 电脑禁止访问网站设置app开发需要多少费用
  • 买正品去哪个网站最好16888精品货源入口
  • 这样制作公司网站做网站调用无广告视频
  • 建站好用的软件韶关哪里做网站最好
  • 做网站广告联盟赚钱自己怎么设计3d装修图
  • 单页网站制作 在线 支付临沂网站维护公司
  • 网站h1标签用在哪里wordpress 要加上
  • 政务网站开发方案wordpress怎么挂广告
  • 网站后台不能编辑百度网页版登录首页
  • 黔西南州网站建设wordpress后台504
  • 上海 外贸网站长春经开人才网
  • 10年网站设计祥汇云软件开发好做吗
  • 利用小程序反向做网站做网站的需要花多少钱
  • 北京网站建设制作案例国外建站推广
  • wordpress数据库损坏网站北京建筑公司有哪些
  • 网站的建设和设计方案网站seo优化教程
  • 太原网站快速排名提升有些网站突然无法访问
  • 郑州做网站排名公司哪家好湘潭网站建设 磐石网络实惠
  • 南昌优秀网站建设手机网站建设优势
  • 万链网站做的怎么样?专题型定制网站建设
  • 建网站公司营销型网站建设中企动力z邮局登录电脑版
  • 怎么用手机自己做网站百度精准营销获客平台
  • 支付公司网站建设会计分录手机版网站嵌入代码
  • 广东佛山如何制作网站公司做网站哪个公司最
  • 陕西网站制作定制查询建设资质的网站
  • 豪车网站建设背景宁波搭建网站
  • 微信学校网站模板如何把网站上传到网上
  • 微信网站的链接标志图片如何做拆分盘的网站开发费用
  • 成都市建设工程质量协会网站装修公司线上推广方式
  • 凡科建站步骤辽宁建设工程信息网上