当前位置: 首页 > news >正文

不同用户入口的网站样板网页设计公司如何看待极简风格

不同用户入口的网站样板,网页设计公司如何看待极简风格,宽带多少钱一个月,深圳网站开发怎么样1 解码器介绍 解码器部分: 由N个解码器层堆叠而成每个解码器层由三个子层连接结构组成第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接第二个子层连接结构包括一个多头注意力子层和规范化层以及一个残差连接第三个子层连接结构包括一个前馈全连接子层…1 解码器介绍 解码器部分: 由N个解码器层堆叠而成每个解码器层由三个子层连接结构组成第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接第二个子层连接结构包括一个多头注意力子层和规范化层以及一个残差连接第三个子层连接结构包括一个前馈全连接子层和规范化层以及一个残差连接 说明:解码器层中的各个部分如多头注意力机制规范化层前馈全连接网络子层连接结构都与编码器中的实现相同. 因此这里可以直接拿来构建解码器层. 2 解码器层 2.1 解码器层的作用 作为解码器的组成单元, 每个解码器层根据给定的输入向目标方向进行特征提取操作即解码过程. 2.2 解码器层的代码实现 # 解码器层类 DecoderLayer 实现思路分析 # init函数 (self, size, self_attn, src_attn, feed_forward, dropout)# 词嵌入维度尺寸大小size 自注意力机制层对象self_attn 一般注意力机制层对象src_attn 前馈全连接层对象feed_forward# clones3子层连接结构 self.sublayer clones(SublayerConnection(size,dropout),3) # forward函数 (self, x, memory, source_mask, target_mask)# 数据经过子层连接结构1 self.sublayer[0](x, lambda x:self.self_attn(x, x, x, target_mask))# 数据经过子层连接结构2 self.sublayer[1](x, lambda x:self.src_attn(x, m, m, source_mask))# 数据经过子层连接结构3 self.sublayer[2](x, self.feed_forward)class DecoderLayer(nn.Module):def __init__(self, size, self_attn, src_attn, feed_forward, dropout):super(DecoderLayer, self).__init__()# 词嵌入维度尺寸大小self.size size# 自注意力机制层对象 qkvself.self_attn self_attn# 一遍注意力机制对象 q!kvself.src_attn src_attn# 前馈全连接层对象self.feed_forward feed_forward# clones3子层连接结构self.sublayer clones(SublayerConnection(size, dropout), 3)def forward(self, x, memory, source_mask, target_mask):m memory# 数据经过子层连接结构1x self.sublayer[0](x, lambda x:self.self_attn(x, x, x, target_mask))# 数据经过子层连接结构2x self.sublayer[1](x, lambda x:self.src_attn (x, m, m, source_mask))# 数据经过子层连接结构3x self.sublayer[2](x, self.feed_forward)return x函数调用 def dm_test_DecoderLayer():d_model 512vocab 1000 # 词表大小是1000# 输入x 是一个使用Variable封装的长整型张量, 形状是2 x 4x Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))emb Embeddings(d_model, vocab)embr emb(x)dropout 0.2max_len 60 # 句子最大长度x embr # [2, 4, 512]pe PositionalEncoding(d_model, dropout, max_len)pe_result pe(x)x pe_result # 获取位置编码器层 编码以后的结果# 类的实例化参数与解码器层类似, 相比多出了src_attn, 但是和self_attn是同一个类.head 8d_ff 64size 512self_attn src_attn MultiHeadedAttention(head, d_model, dropout)# 前馈全连接层也和之前相同ff PositionwiseFeedForward(d_model, d_ff, dropout)x pe_result# 产生编码器结果 # 注意此函数返回编码以后的结果 要有返回值en_result dm_test_Encoder()memory en_resultmask Variable(torch.zeros(8, 4, 4))source_mask target_mask mask# 实例化解码器层 对象dl DecoderLayer(size, self_attn, src_attn, ff, dropout)# 对象调用dl_result dl(x, memory, source_mask, target_mask)print(dl_result.shape)print(dl_result)输出效果 torch.Size([2, 4, 512]) tensor([[[-27.4382, 0.6516, 6.6735, ..., -42.2930, -44.9728, 0.1264],[-28.7835, 26.4919, -0.5608, ..., 0.5652, -2.9634, 9.7438],[-19.6998, 13.5164, 45.8216, ..., 23.9127, 22.0259, 34.0195],[ -0.1647, 0.2331, -36.4173, ..., -20.0557, 29.4576, 2.5048]],[[ 29.1466, 50.7677, 26.4624, ..., -39.1015, -27.9200, 19.6819],[-10.7069, 28.0897, -0.4107, ..., -35.7795, 9.6881, 0.3228],[ -6.9027, -16.0590, -0.8897, ..., 4.0253, 2.5961, 37.4659],[ 9.8892, 32.7008, -6.6772, ..., -11.4273, -21.4676, 32.5692]]],grad_fnAddBackward0)2.3 解码器层总结¶ 学习了解码器层的作用: 作为解码器的组成单元, 每个解码器层根据给定的输入向目标方向进行特征提取操作即解码过程. 学习并实现了解码器层的类: DecoderLayer 类的初始化函数的参数有5个, 分别是size代表词嵌入的维度大小, 同时也代表解码器层的尺寸第二个是self_attn多头自注意力对象也就是说这个注意力机制需要QKV第三个是src_attn多头注意力对象这里Q!KV 第四个是前馈全连接层对象最后就是droupout置0比率.forward函数的参数有4个分别是来自上一层的输入x来自编码器层的语义存储变量mermory 以及源数据掩码张量和目标数据掩码张量.最终输出了由编码器输入和目标数据一同作用的特征提取结果. 3 解码器 3.1 解码器的作用 根据编码器的结果以及上一次预测的结果, 对下一次可能出现的值进行特征表示. 3.2 解码器的代码分析 # 解码器类 Decoder 实现思路分析 # init函数 (self, layer, N):# self.layers clones N个解码器层clones(layer, N)# self.norm 定义规范化层 LayerNorm(layer.size) # forward函数 (self, x, memory, source_mask, target_mask)# 数据以此经过各个子层 x layer(x, memory, source_mask, target_mask)# 数据最后经过规范化层 return self.norm(x)# 返回处理好的数据class Decoder(nn.Module):def __init__(self, layer, N):# 参数layer 解码器层对象# 参数N 解码器层对象的个数super(Decoder, self).__init__()# clones N个解码器层self.layers clones(layer, N)# 定义规范化层self.norm LayerNorm(layer.size)def forward(self, x, memory, source_mask, target_mask):# 数据以此经过各个子层for layer in self.layers:x layer(x, memory, source_mask, target_mask)# 数据最后经过规范化层return self.norm(x)函数调用 # 测试 解码器 def dm_test_Decoder():d_model 512vocab 1000 # 词表大小是1000# 输入x 是一个使用Variable封装的长整型张量, 形状是2 x 4x Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))emb Embeddings(d_model, vocab)embr emb(x)dropout 0.2max_len 60 # 句子最大长度x embr # [2, 4, 512]pe PositionalEncoding(d_model, dropout, max_len)pe_result pe(x)x pe_result # 获取位置编码器层 编码以后的结果# 分别是解码器层layer和解码器层的个数Nsize 512d_model 512head 8d_ff 64dropout 0.2c copy.deepcopy# 多头注意力对象attn MultiHeadedAttention(head, d_model)# 前馈全连接层ff PositionwiseFeedForward(d_model, d_ff, dropout)# 解码器层layer DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout)N 6# 输入参数与解码器层的输入参数相同x pe_result# 产生编码器结果en_result demo238_test_Encoder()memory en_result# 掩码对象mask Variable(torch.zeros(8, 4, 4))# sorce掩码 target掩码source_mask target_mask mask# 创建 解码器 对象de Decoder(layer, N)# 解码器对象 解码de_result de(x, memory, source_mask, target_mask)print(de_result)print(de_result.shape)输出结果 tensor([[[ 0.1853, -0.8858, -0.0393, ..., -1.4989, -1.4008, 0.8456],[-1.0841, -0.0777, 0.0836, ..., -1.5568, 1.4074, -0.0848],[-0.4107, -0.1306, -0.0069, ..., -0.2370, -0.1259, 0.7591],[ 1.2895, 0.2655, 1.1799, ..., -0.2413, 0.9087, 0.4055]],[[ 0.3645, -0.3991, -1.2862, ..., -0.7078, -0.1457, -1.0457],[ 0.0146, -0.0639, -1.2143, ..., -0.7865, -0.1270, 0.5623],[ 0.0685, -0.1465, -0.1354, ..., 0.0738, -0.9769, -1.4295],[ 0.3168, 0.6305, -0.1549, ..., 1.0969, 1.8775, -0.5154]]],grad_fnAddBackward0) torch.Size([2, 4, 512])
文章转载自:
http://www.morning.fmswb.cn.gov.cn.fmswb.cn
http://www.morning.hyryq.cn.gov.cn.hyryq.cn
http://www.morning.gzzncl.cn.gov.cn.gzzncl.cn
http://www.morning.c7497.cn.gov.cn.c7497.cn
http://www.morning.kljhr.cn.gov.cn.kljhr.cn
http://www.morning.ryrpq.cn.gov.cn.ryrpq.cn
http://www.morning.dzzjq.cn.gov.cn.dzzjq.cn
http://www.morning.jnbsx.cn.gov.cn.jnbsx.cn
http://www.morning.mdrnn.cn.gov.cn.mdrnn.cn
http://www.morning.fnbtn.cn.gov.cn.fnbtn.cn
http://www.morning.llxyf.cn.gov.cn.llxyf.cn
http://www.morning.wgxtz.cn.gov.cn.wgxtz.cn
http://www.morning.rlhh.cn.gov.cn.rlhh.cn
http://www.morning.kjawz.cn.gov.cn.kjawz.cn
http://www.morning.cspwj.cn.gov.cn.cspwj.cn
http://www.morning.nhzxd.cn.gov.cn.nhzxd.cn
http://www.morning.kybpj.cn.gov.cn.kybpj.cn
http://www.morning.kmrgl.cn.gov.cn.kmrgl.cn
http://www.morning.fjscr.cn.gov.cn.fjscr.cn
http://www.morning.jpnfm.cn.gov.cn.jpnfm.cn
http://www.morning.tqsmc.cn.gov.cn.tqsmc.cn
http://www.morning.pfnlc.cn.gov.cn.pfnlc.cn
http://www.morning.rcfwr.cn.gov.cn.rcfwr.cn
http://www.morning.pgfkl.cn.gov.cn.pgfkl.cn
http://www.morning.gnwpg.cn.gov.cn.gnwpg.cn
http://www.morning.gwsll.cn.gov.cn.gwsll.cn
http://www.morning.lpzyq.cn.gov.cn.lpzyq.cn
http://www.morning.xmwdt.cn.gov.cn.xmwdt.cn
http://www.morning.kjkml.cn.gov.cn.kjkml.cn
http://www.morning.gqcsd.cn.gov.cn.gqcsd.cn
http://www.morning.bgxgq.cn.gov.cn.bgxgq.cn
http://www.morning.jcxqc.cn.gov.cn.jcxqc.cn
http://www.morning.qfkxj.cn.gov.cn.qfkxj.cn
http://www.morning.rfdqr.cn.gov.cn.rfdqr.cn
http://www.morning.gbtty.cn.gov.cn.gbtty.cn
http://www.morning.nkjjp.cn.gov.cn.nkjjp.cn
http://www.morning.dhnqt.cn.gov.cn.dhnqt.cn
http://www.morning.czwed.com.gov.cn.czwed.com
http://www.morning.rqxmz.cn.gov.cn.rqxmz.cn
http://www.morning.wbysj.cn.gov.cn.wbysj.cn
http://www.morning.qrqcr.cn.gov.cn.qrqcr.cn
http://www.morning.mnygn.cn.gov.cn.mnygn.cn
http://www.morning.cszbj.cn.gov.cn.cszbj.cn
http://www.morning.kjrp.cn.gov.cn.kjrp.cn
http://www.morning.djxnn.cn.gov.cn.djxnn.cn
http://www.morning.yfzld.cn.gov.cn.yfzld.cn
http://www.morning.knscf.cn.gov.cn.knscf.cn
http://www.morning.nysjb.cn.gov.cn.nysjb.cn
http://www.morning.gnbtp.cn.gov.cn.gnbtp.cn
http://www.morning.yxlhz.cn.gov.cn.yxlhz.cn
http://www.morning.qckwj.cn.gov.cn.qckwj.cn
http://www.morning.mrlls.cn.gov.cn.mrlls.cn
http://www.morning.ywgrr.cn.gov.cn.ywgrr.cn
http://www.morning.nyqnk.cn.gov.cn.nyqnk.cn
http://www.morning.rfmzc.cn.gov.cn.rfmzc.cn
http://www.morning.bztzm.cn.gov.cn.bztzm.cn
http://www.morning.prjns.cn.gov.cn.prjns.cn
http://www.morning.lmmkf.cn.gov.cn.lmmkf.cn
http://www.morning.wpmqq.cn.gov.cn.wpmqq.cn
http://www.morning.rzdpd.cn.gov.cn.rzdpd.cn
http://www.morning.fykqh.cn.gov.cn.fykqh.cn
http://www.morning.ns3nt8.cn.gov.cn.ns3nt8.cn
http://www.morning.yptwn.cn.gov.cn.yptwn.cn
http://www.morning.lbgfz.cn.gov.cn.lbgfz.cn
http://www.morning.gfrtg.com.gov.cn.gfrtg.com
http://www.morning.kjrlp.cn.gov.cn.kjrlp.cn
http://www.morning.ntgrn.cn.gov.cn.ntgrn.cn
http://www.morning.vvbsxm.cn.gov.cn.vvbsxm.cn
http://www.morning.pangucheng.cn.gov.cn.pangucheng.cn
http://www.morning.lfqtp.cn.gov.cn.lfqtp.cn
http://www.morning.smzr.cn.gov.cn.smzr.cn
http://www.morning.nkqrq.cn.gov.cn.nkqrq.cn
http://www.morning.jypsm.cn.gov.cn.jypsm.cn
http://www.morning.xkzr.cn.gov.cn.xkzr.cn
http://www.morning.zbkwj.cn.gov.cn.zbkwj.cn
http://www.morning.mmxnb.cn.gov.cn.mmxnb.cn
http://www.morning.kqyyq.cn.gov.cn.kqyyq.cn
http://www.morning.dwyyf.cn.gov.cn.dwyyf.cn
http://www.morning.mpscg.cn.gov.cn.mpscg.cn
http://www.morning.rlbc.cn.gov.cn.rlbc.cn
http://www.tj-hxxt.cn/news/255536.html

相关文章:

  • 杭州网站外包网页游戏开服表最新
  • 网络科技公司网站源码下载什么行业必须做网站
  • 网站建设维护培训会上的讲话wordpress编辑文章图片文字对齐
  • 蚌埠网站建设公司福州市做网站公司
  • 帮公司做网站赚钱吗大型网站 jquery
  • 网站icp备案查询合肥seo推广排名
  • 山东青岛网站建设公司免费自助网站建站
  • 南京便宜网站建设万网 x3 wordpress
  • 网站排名优化是怎么做的wordpress配置是提升数据库错误
  • 广州网站优化专家wordpress 精致主题
  • o2o网站建设流程恢复wordpress修订版本
  • 外贸公司英文网站建设电脑网页翻译
  • c#网站开发网易云课堂百度云下载网站建设和网站设计有什么区别
  • 制作网站的布局网络广州越秀区发布
  • wordpress网盘搜索引擎衡阳网站优化公司
  • 织梦怎么制作手机网站湖北 商城网站建设多少钱
  • 上海知名网站建设公司排名数据分析师报名官网
  • 网站建设策划方案怎么写象山县建设工程招投标网站
  • 做网站前台模型要做什么呢贵阳网站建设多钱钱
  • c 网站开发类似优酷做动漫网站用什么程序
  • 烟台百度网站推广门户网站建设 报价
  • 天津网站页面设计长沙做网站公司
  • 网站设计模板下载网站建设下什么科目
  • 网站服务器租用开票应该网站滑动
  • 乐都企业网站建设公司建设牌安全带官方网站
  • 手机app制作pdf天津外贸seo推广
  • 山东省建设厅教育网站做网站怎么给图片加连接
  • 公司网站开发制作学校网站建设的好处
  • 公共网站怎地做网页制作培训班课程
  • 重庆装修公司网站建设企业模板之家