当前位置: 首页 > news >正文

WordPress网站修改品牌成功案例100个

WordPress网站修改,品牌成功案例100个,8211 wordpress,网页界面设计的功能性主要体现在信息的1.简述 函数语法 x lsqnonlin(fun,x0) 函数用于#xff1a; 解决非线性最小二乘(非线性数据拟合)问题 解决非线性最小二乘曲线拟合问题的形式 变量x的约束上下限为ub和lb#xff0c; x lsqnonlin(fun,x0)从x0点开始#xff0c;找到fun中描述的函数的最小平方和。函数fu…1.简述 函数语法 x lsqnonlin(fun,x0) 函数用于 解决非线性最小二乘(非线性数据拟合)问题 解决非线性最小二乘曲线拟合问题的形式 变量x的约束上下限为ub和lb x lsqnonlin(fun,x0)从x0点开始找到fun中描述的函数的最小平方和。函数fun应该返回一个向量(或数组)而不是值的平方和。(该算法隐式地计算了fun(x)元素的平方和。)   2.代码 主程序 %%  用lsqnonlin求解最小二乘问题 clear all x0 [0.3 0.4];                        % 初值点 [x,resnorm] lsqnonlin(f1211,x0)     % 调用最优化函数求  x  和  平方和残差 子程序 function [xCurrent,Resnorm,FVAL,EXITFLAG,OUTPUT,LAMBDA,JACOB] lsqnonlin(FUN,xCurrent,LB,UB,options,varargin) %LSQNONLIN solves non-linear least squares problems. %   LSQNONLIN attempts to solve problems of the form: %   min  sum {FUN(X).^2}    where X and the values returned by FUN can be    %    X                      vectors or matrices. % %   LSQNONLIN implements two different algorithms: trust region reflective %   and Levenberg-Marquardt. Choose one via the option Algorithm: for %   instance, to choose Levenberg-Marquardt, set  %   OPTIONS optimoptions(lsqnonlin, Algorithm,levenberg-marquardt),  %   and then pass OPTIONS to LSQNONLIN. %     %   X LSQNONLIN(FUN,X0) starts at the matrix X0 and finds a minimum X to  %   the sum of squares of the functions in FUN. FUN accepts input X  %   and returns a vector (or matrix) of function values F evaluated %   at X. NOTE: FUN should return FUN(X) and not the sum-of-squares  %   sum(FUN(X).^2)). (FUN(X) is summed and squared implicitly in the %   algorithm.)  % %   X LSQNONLIN(FUN,X0,LB,UB) defines a set of lower and upper bounds on %   the design variables, X, so that the solution is in the range LB X %   UB. Use empty matrices for LB and UB if no bounds exist. Set LB(i) %   -Inf if X(i) is unbounded below; set UB(i) Inf if X(i) is %   unbounded above. % %   X LSQNONLIN(FUN,X0,LB,UB,OPTIONS) minimizes with the default %   optimization parameters replaced by values in OPTIONS, an argument %   created with the OPTIMOPTIONS function. See OPTIMOPTIONS for details. %   Use the SpecifyObjectiveGradient option to specify that FUN also %   returns a second output argument J that is the Jacobian matrix at the %   point X. If FUN returns a vector F of m components when X has length n, %   then J is an m-by-n matrix where J(i,j) is the partial derivative of %   F(i) with respect to x(j). (Note that the Jacobian J is the transpose %   of the gradient of F.) % %   X LSQNONLIN(PROBLEM) solves the non-linear least squares problem  %   defined in PROBLEM. PROBLEM is a structure with the function FUN in  %   PROBLEM.objective, the start point in PROBLEM.x0, the lower bounds in  %   PROBLEM.lb, the upper bounds in PROBLEM.ub, the options structure in  %   PROBLEM.options, and solver name lsqnonlin in PROBLEM.solver. Use  %   this syntax to solve at the command line a problem exported from  %   OPTIMTOOL.  % %   [X,RESNORM] LSQNONLIN(FUN,X0,...) returns  %   the value of the squared 2-norm of the residual at X: sum(FUN(X).^2).  % %   [X,RESNORM,RESIDUAL] LSQNONLIN(FUN,X0,...) returns the value of the  %   residual at the solution X: RESIDUAL FUN(X). % %   [X,RESNORM,RESIDUAL,EXITFLAG] LSQNONLIN(FUN,X0,...) returns an %   EXITFLAG that describes the exit condition. Possible values of EXITFLAG %   and the corresponding exit conditions are listed below. See the %   documentation for a complete description. % %     1  LSQNONLIN converged to a solution. %     2  Change in X too small. %     3  Change in RESNORM too small. %     4  Computed search direction too small. %     0  Too many function evaluations or iterations. %    -1  Stopped by output/plot function. %    -2  Bounds are inconsistent. % %   [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT] LSQNONLIN(FUN,X0,...) returns a  %   structure OUTPUT with the number of iterations taken in %   OUTPUT.iterations, the number of function evaluations in %   OUTPUT.funcCount, the algorithm used in OUTPUT.algorithm, the number %   of CG iterations (if used) in OUTPUT.cgiterations, the first-order %   optimality (if used) in OUTPUT.firstorderopt, and the exit message in %   OUTPUT.message. % %   [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA] LSQNONLIN(FUN,X0,...)  %   returns the set of Lagrangian multipliers, LAMBDA, at the solution:  %   LAMBDA.lower for LB and LAMBDA.upper for UB. % %   [X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN] LSQNONLIN(FUN, %   X0,...) returns the Jacobian of FUN at X.    % %   Examples %     FUN can be specified using : %        x lsqnonlin(myfun,[2 3 4]) % %   where myfun is a MATLAB function such as: % %       function F myfun(x) %       F sin(x); % %   FUN can also be an anonymous function: % %       x lsqnonlin((x) sin(3*x),[1 4]) % %   If FUN is parameterized, you can use anonymous functions to capture the  %   problem-dependent parameters. Suppose you want to solve the non-linear  %   least squares problem given in the function myfun, which is  %   parameterized by its second argument c. Here myfun is a MATLAB file  %   function such as % %       function F myfun(x,c) %       F [ 2*x(1) - exp(c*x(1)) %             -x(1) - exp(c*x(2)) %             x(1) - x(2) ]; % %   To solve the least squares problem for a specific value of c, first  %   assign the value to c. Then create a one-argument anonymous function  %   that captures that value of c and calls myfun with two arguments.  %   Finally, pass this anonymous function to LSQNONLIN: % %       c -1; % define parameter first %       x lsqnonlin((x) myfun(x,c),[1;1]) % %   See also OPTIMOPTIONS, LSQCURVEFIT, FSOLVE, , INLINE. %   Copyright 1990-2018 The MathWorks, Inc. % ------------Initialization---------------- defaultopt struct(...     Algorithm,trust-region-reflective,...     DerivativeCheck,off,...     Diagnostics,off,...     DiffMaxChange,Inf,...     DiffMinChange,0,...     Display,final,...     FinDiffRelStep, [], ...     FinDiffType,forward,...     FunValCheck,off,...     InitDamping, 0.01, ...     Jacobian,off,...     JacobMult,[],...      JacobPattern,sparse(ones(Jrows,Jcols)),...     MaxFunEvals,[],...     MaxIter,400,...     MaxPCGIter,max(1,floor(numberOfVariables/2)),...     OutputFcn,[],...     PlotFcns,[],...     PrecondBandWidth,Inf,...     ScaleProblem,none,...     TolFun, 1e-6,...      TolFunValue, 1e-6, ...     TolPCG,0.1,...     TolX,1e-6,...     TypicalX,ones(numberOfVariables,1),...     UseParallel,false ); % If just defaults passed in, return the default options in X if nargin1 nargout 1 strcmpi(FUN,defaults)    xCurrent defaultopt;    return end if nargin 5     options [];     if nargin 4         UB [];         if nargin 3             LB [];         end     end end problemInput false; if nargin 1     if isa(FUN,struct)         problemInput true;         [FUN,xCurrent,LB,UB,options] separateOptimStruct(FUN);     else % Single input and non-structure.         error(message(optim:lsqnonlin:InputArg));     end end % No options passed. Set options directly to defaultopt after allDefaultOpts isempty(options); % Prepare the options for the solver options prepareOptionsForSolver(options, lsqnonlin); % Set options to default if no options were passed. if allDefaultOpts     % Options are all default     options defaultopt; end if nargin 2 ~problemInput   error(message(optim:lsqnonlin:NotEnoughInputs)) end % Check for non-double inputs msg isoptimargdbl(LSQNONLIN, {X0,LB,UB}, ...                                xCurrent,LB,  UB); if ~isempty(msg)     error(optim:lsqnonlin:NonDoubleInput,msg); end caller lsqnonlin;  [funfcn,mtxmpy,flags,sizes,~,xstart,lb,ub,EXITFLAG,Resnorm,FVAL,LAMBDA, ...     JACOB,OUTPUT,earlyTermination] lsqnsetup(FUN,xCurrent,LB,UB,options,defaultopt, ...     allDefaultOpts,caller,nargout,length(varargin)); if earlyTermination     return % premature return because of problem detected in lsqnsetup() end xCurrent(:) xstart; % reshape back to user shape before evaluation % Catch any error in user objective during initial evaluation only switch funfcn{1}     case fun         try             initVals.F feval(funfcn{3},xCurrent,varargin{:});         catch userFcn_ME             optim_ME MException(optim:lsqnonlin:InvalidFUN, ...                 getString(message(optim:lsqnonlin:InvalidFUN)));             userFcn_ME addCause(userFcn_ME,optim_ME);             rethrow(userFcn_ME)         end         initVals.J [];     case fungrad         try             [initVals.F,initVals.J] feval(funfcn{3},xCurrent,varargin{:});         catch userFcn_ME             optim_ME MException(optim:lsqnonlin:InvalidFUN, ...                 getString(message(optim:lsqnonlin:InvalidFUN)));             userFcn_ME addCause(userFcn_ME,optim_ME);             rethrow(userFcn_ME)         end     case fun_then_grad         try             initVals.F feval(funfcn{3},xCurrent,varargin{:});         catch userFcn_ME             optim_ME MException(optim:lsqnonlin:InvalidFUN, ...                 getString(message(optim:lsqnonlin:InvalidFUN)));             userFcn_ME addCause(userFcn_ME,optim_ME);             rethrow(userFcn_ME)         end         try                 initVals.J feval(funfcn{4},xCurrent,varargin{:});         catch userFcn_ME             optim_ME MException(optim:lsqnonlin:InvalidFUN, ...                 getString(message(optim:lsqnonlin:InvalidJacobFun)));             userFcn_ME addCause(userFcn_ME,optim_ME);             rethrow(userFcn_ME)         end     otherwise         error(message(optim:lsqnonlin:UndefCallType)) end % Check for non-double data typed values returned by user functions  if ~isempty( isoptimargdbl(LSQNONLIN, {F,J}, initVals.F, initVals.J) )     error(optim:lsqnonlin:NonDoubleFunVal,getString(message(optimlib:commonMsgs:NonDoubleFunVal,LSQNONLIN))); end % Flag to determine whether to look up the exit msg. flags.makeExitMsg logical(flags.verbosity) || nargout 4; [xCurrent,Resnorm,FVAL,EXITFLAG,OUTPUT,LAMBDA,JACOB] ...    lsqncommon(funfcn,xCurrent,lb,ub,options,defaultopt,allDefaultOpts,caller,...               initVals,sizes,flags,mtxmpy,varargin{:});            3.运行结果
http://www.tj-hxxt.cn/news/233582.html

相关文章:

  • 官方网站的英文工商网上核名系统
  • 网站群维护方案广州安全教育平台注册
  • 画廊网站模板官网应用商店下载
  • vs网站开发表格大小设置dw网页怎么使用模板
  • 网站动态页面河南电商网站设计
  • 佛山网站建设哪家评价高建设银行海外分行招聘网站
  • 有什么好的手机推荐网站爱战网关键词查询网站
  • 青海建设厅网站学编程要多少钱
  • 建一个交易网站需要多少钱淘宝代运营公司十大排名
  • 匿名网站建设营销型网站策划 ppt
  • 网站建设 菜鸟教程公司做网站 手机 电脑
  • 佛山网络公司哪家便宜淄博网站建设优化运营熊掌号
  • 浙江做网站公司wordpress插件dedecms
  • 网站建设业务前景做网页要花多少钱
  • 深圳微商城网站设计电话常熟seo关键词优化公司
  • 做网站网页的公司婚礼礼网站如何做的
  • 1 建设网站目的是什么意思室内设计公司图片
  • 51个人网站百度公司介绍
  • 上海网站建设流进销存软件终身免费版
  • 网站的开发环境是什么wordpress免费主题企业
  • 青岛网站空间北京的网站设计公司
  • 建设培训网站建设南昌中企动力做的网站怎么样
  • 做移动网站开发学院网站怎么做的
  • wordpress一键优化网站优化关键词怎么做
  • 大学网站栏目建设网站规划设计内容有哪些
  • 怎样做公司网站建设南京专业网站制作公司
  • 重庆建设岗位培训网站移动互联网开发应聘
  • 网站制作与app开发哪个要难一点做网站的团队业绩怎么写
  • 利用别人域名做自己的网站seo是什么意思som
  • 万维网网站备案流程生态文明建设