免费引流app下载,安徽网站关键字优化,ie不能显示wordpress图片,微软做网站的软件修改原因
yolo自带的分类前处理对于长方形的数据不够友好#xff0c;存在特征丢失等问题修改后虽然解决了这个问题但是局部特征也会丢失因为会下采样程度多于自带的#xff0c;总之具体哪种好不同数据应该表现不同我的数据中大量长宽比很大的数据所以尝试修改自带的前处理存在特征丢失等问题修改后虽然解决了这个问题但是局部特征也会丢失因为会下采样程度多于自带的总之具体哪种好不同数据应该表现不同我的数据中大量长宽比很大的数据所以尝试修改自带的前处理以保证理论上的合理性。
修改过程
yolo中自带的分类前处理和检测有一些差异
调试推理代码发现ultralytics/models/yolo/classify/predict.py中对图像进行前处理的操作主要是self.transforms
def preprocess(self, img):Converts input image to model-compatible data type.if not isinstance(img, torch.Tensor):is_legacy_transform any(self._legacy_transform_name in str(transform) for transform in self.transforms.transforms)if is_legacy_transform: # to handle legacy transformsimg torch.stack([self.transforms(im) for im in img], dim0)else:# import ipdb;ipdb.set_trace()img torch.stack([self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim0)img (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device)return img.half() if self.model.fp16 else img.float() # uint8 to fp16/32通过调试打印self.transforms得到
Compose(Resize(size96, interpolationbilinear, max_sizeNone, antialiasTrue)CenterCrop(size(96, 96))ToTensor()Normalize(meantensor([0., 0., 0.]), stdtensor([1., 1., 1.]))
)假设我设置的imgsz为96从这里简单的解读可以理解为先进行resize然后进行中心裁切保证输入尺寸为96x96
具体的查看哪里可以修改前处理首先发现在ultralytics/engine/predictor.py中
def setup_source(self, source):Sets up source and inference mode.self.imgsz check_imgsz(self.args.imgsz, strideself.model.stride, min_dim2) # check image size# import ipdb; ipdb.set_trace()self.transforms (getattr(self.model.model,transforms,classify_transforms(self.imgsz[0], crop_fractionself.args.crop_fraction), #dujiang)if self.args.task classifyelse None)可以发现self.transforms主要调用的是classify_transforms方法
进一步我们在ultralytics/data/augment.py中找到classify_transforms的实现
if scale_size[0] scale_size[1]:# Simple case, use torchvision built-in Resize with the shortest edge mode (scalar size arg)tfl [T.Resize(scale_size[0], interpolationgetattr(T.InterpolationMode, interpolation))]else:# Resize the shortest edge to matching target dim for non-square targettfl [T.Resize(scale_size)]tfl.extend([T.CenterCrop(size),T.ToTensor(),T.Normalize(meantorch.tensor(mean), stdtorch.tensor(std)),])发现和我们的设想基本一致查看代码逻辑首先是针对正方形图像会将图像缩放到指定的高度同时保持长宽比确保较短的一边正好等于目标尺寸非正方形图片将短边resize到指定大小长边此时可能是超出的所以 T.CenterCrop(size)进行中心裁切确保尺寸是我们指定的
针对上面的分析可能问题就很明显了如果处理的图像是长宽比非常不均匀的图像那么中心裁切会导致丢失大量信息我参考了检测的方法决定将分类的预处理修改为填充而不是裁切。
首先确定思想我想做的是根据长边resize到指定尺寸并且保证长宽比短边会不足刚好与原本的代码逻辑相反然后短边不足的地方进行填充保证短边也达到指定尺寸填充yolo好像一般是144这里我也选择144具体实现如下
添加两个类分别实现resize和padding
class ResizeLongestSide:def __init__(self, size, interpolation):self.size sizeself.interpolation interpolationdef __call__(self, img):# 获取图像的当前尺寸width, height img.size# 计算缩放比例if width height:new_width self.sizenew_height int(self.size * height / width)else:new_height self.sizenew_width int(self.size * width / height)# 按长边缩放return img.resize((new_width, new_height), Image.BILINEAR)class PadToSquare:def __init__(self, size, fill(114)):self.size sizeself.fill filldef __call__(self, img):# 获取当前尺寸width, height img.size# 计算需要填充的大小delta_w self.size - widthdelta_h self.size - heightpadding (delta_w // 2, delta_h // 2, delta_w - (delta_w // 2), delta_h - (delta_h // 2))# 填充图像return F.pad(img, padding, fillself.fill, padding_modeconstant)调用上面的类进行实现
def classify_transforms(size96,meanDEFAULT_MEAN,stdDEFAULT_STD,interpolationBILINEAR,crop_fraction: float DEFAULT_CROP_FRACTION,padding_color(114, 114, 114), # 默认填充为灰色
):import torchvision.transforms as Timport torchfrom torchvision.transforms import functional as F# import ipdb;ipdb.set_trace()tfl [# T.ClassifyLetterBox(size),ResizeLongestSide(size, interpolationgetattr(T.InterpolationMode, interpolation)), # 按长边缩放PadToSquare(size, fillpadding_color), # 填充至正方形T.ToTensor(),T.Normalize(meantorch.tensor(mean), stdtorch.tensor(std)),]return T.Compose(tfl)想要训练前先确定自己修改是否符合预期进行如下测试
Examples: from ultralytics.data.augment import LetterBox, classify_transforms, classify_transforms_with_padding from PIL import Image transforms classify_transforms_with_padding(size96) img Image.open(bus.jpg) 3ch img_rgb Image.merge(RGB, (img, img, img)) transformed_img transforms(img)import torchvision.transforms as TDEFAULT_MEAN (0.0, 0.0, 0.0)DEFAULT_STD (1.0, 1.0, 1.0)import torchdef save_transformed_image(transformed_img, save_pathtransformed_image.png):# 定义反向变换将张量转换回 PIL 图像unnormalize T.Normalize(mean[-m / s for m, s in zip(DEFAULT_MEAN, DEFAULT_STD)],std[1 / s for s in DEFAULT_STD])img_tensor unnormalize(transformed_img)img_tensor torch.clamp(img_tensor, 0, 1)to_pil T.ToPILImage()img_pil to_pil(img_tensor)img_pil.save(save_path)print(fImage saved at {save_path})save_transformed_image(transformed_img, save_pathtransformed_image.png)效果图 ok效果预期一致接下来可以训练了之前对于矩形的图像会有裁切现在使用padding解决了。但是具体效果还得看结果。补充一下修改一定要把类和方法分开即不要在方法中定义类这样会导致训练出错
总结中间遇到问题参考这里解决