泰州网站建设策划方案,福建新闻最新消息,wordpress新版编辑器,广州单管核酸采样点多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab基于ZOA-CNN-BiGRU-Attention斑马优化卷积双向门控循环单元网络…多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.Matlab基于ZOA-CNN-BiGRU-Attention斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法 2.要求2021版以上。多变量特征输入单序列变量输出输入前一天的特征实现后一天的预测超前24步预测对卷积核大小、BiGRU神经元个数、学习率进行寻优以最小MAPE为目标函数展示MAPE、RMSE、MAE的计算结果。 3.适用于风速预测光伏功率预测发电功率预测出力预测海上风电预测碳价预测等等。 4.斑马优化算法Zebra Optimization AlgorithmZOA等人于2022年底提出的新算法对比于灰狼GWO、鲸鱼WOA、遗传GA、粒子群PSO等算法有着更高的创新性。 5.直接替换数据就可以,使用EXCEL表格直接导入不需要对程序大幅修改。程序内有详细注释便于理解程序运行。 模型描述 斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法是一种用于预测多变量时间序列数据的算法。它结合了多种神经网络技术包括斑马优化算法、卷积神经网络、双向门控循环单元网络和注意力机制。首先将多变量时间序列数据进行归一化处理确保数据在相似的尺度上。然后将数据划分为训练集和测试集。使用斑马优化算法来优化神经网络的权重和偏置。斑马优化算法是一种群体智能算法灵感来自斑马的群体行为。它通过模拟斑马在寻找食物时的行为来搜索最优解。将卷积层、池化层和全连接层组合起来构建卷积神经网络。卷积层可以提取时间序列数据的局部特征池化层可以减少参数数量并保持特征的空间结构全连接层可以将提取的特征映射到输出。使用双向门控循环单元来学习时间序列数据的长期依赖关系。双向GRU可以同时考虑过去和未来的信息捕捉到时间序列数据中的动态模式。引入注意力机制来增强模型对重要时间步的关注。注意力机制可以根据输入数据的重要性分配不同的注意力权重使模型能够更好地聚焦于关键的时间步。将斑马优化算法、CNN、Bi-GRU和注意力机制融合在一起构建完整的预测模型。通过优化网络权重和偏置模型可以学习时间序列数据中的模式和规律并进行准确的多变量预测。使用测试集对模型进行评估计算预测结果与真实值之间的误差例如均方根误差RMSE或平均绝对误差MAE等指标。斑马优化卷积双向门控循环单元网络融合注意力机制的多变量时间序列预测算法可以提供准确的多变量时间序列预测结果并在实际应用中具有较好的性能。 程序设计
完整程序和数据获取方式1同等价值程序兑换完整程序和数据获取方式2私信博主回复MATLAB实现ZOA-CNN-BiGRU-Attention多变量时间序列预测获取。 gruLayer(32,OutputMode,last,Name,bil4,RecurrentWeightsInitializer,He,InputWeightsInitializer,He)dropoutLayer(0.25,Name,drop2)% 全连接层fullyConnectedLayer(numResponses,Name,fc)regressionLayer(Name,output) ];layers layerGraph(layers);layers connectLayers(layers,fold/miniBatchSize,unfold/miniBatchSize);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 训练选项
if gpuDeviceCount0mydevice gpu;
elsemydevice cpu;
endoptions trainingOptions(adam, ...MaxEpochs,MaxEpochs, ...MiniBatchSize,MiniBatchSize, ...GradientThreshold,1, ...InitialLearnRate,learningrate, ...LearnRateSchedule,piecewise, ...LearnRateDropPeriod,56, ...LearnRateDropFactor,0.25, ...L2Regularization,1e-3,...GradientDecayFactor,0.95,...Verbose,false, ...Shuffle,every-epoch,...ExecutionEnvironment,mydevice,...Plots,training-progress);
%% 模型训练
rng(0);
net trainNetwork(XrTrain,YrTrain,layers,options);
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%% 测试数据预测
% 测试集预测
YPred predict(net,XrTest,ExecutionEnvironment,mydevice,MiniBatchSize,numFeatures);
YPred YPred;
% 数据反归一化
YPred sig.*YPred mu;
YTest sig.*YTest mu;
————————————————
版权声明本文为CSDN博主「机器学习之心」的原创文章遵循CC 4.0 BY-SA版权协议转载请附上原文出处链接及本声明。参考资料 [1] http://t.csdn.cn/pCWSp [2] https://download.csdn.net/download/kjm13182345320/87568090?spm1001.2014.3001.5501 [3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm1001.2014.3001.5501