网站运营与营销,济南建设厅网站安全员,logo设计理念万能模板,东营二手房出售信息网欢迎关注我的CSDN#xff1a;https://spike.blog.csdn.net/ 本文地址#xff1a;https://spike.blog.csdn.net/article/details/145454489 在 Transformer 架构中#xff0c;位置编码(Position Embedding) 是辅助模型理解序列中元素顺序的关键机制。绝对位置编码(Absolute P… 欢迎关注我的CSDNhttps://spike.blog.csdn.net/ 本文地址https://spike.blog.csdn.net/article/details/145454489 在 Transformer 架构中位置编码(Position Embedding) 是辅助模型理解序列中元素顺序的关键机制。绝对位置编码(Absolute Positional Encoding, Absolute PE) 是最基础的形式通过为序列中的每个位置分配一个固定的、与位置相关的向量来注入位置信息这些向量通常是通过正弦和余弦函数生成的使模型明确区分不同位置的元素。相对位置编码(Relative Positional Encoding, Relative PE) 通过考虑元素之间的相对距离使得模型在计算注意力时动态地捕捉序列中元素的相对位置关系。旋转位置编码(Rotary Positional Encoding, RoPE) 是相对位置编码的一种改进形式通过将位置信息嵌入到查询(Query)和键Key向量中以旋转的方式结合位置信息使得模型在处理长序列时能够更高效地利用位置信息同时保持计算的简洁性和可扩展性。
原理参考理解 旋转位置编码(RoPE) 与 绝对相对位置编码 之间的优势
1. 旋转位置编码 RoPE
旋转位置编码(Rotary Position Embedding, RoPE) 公式在 Llama3 源码中超参数 θ 500000 \theta 500000 θ500000 p o s pos pos 是序列 s s s 的位置 i i i 是模型维度 d i m dim dim 的位置(或 d i m / 2 dim/2 dim/2)即 P E ( p o s , i ) c o s ( p o s 50000 0 i d m ) i ⋅ s i n ( p o s 50000 0 i d m ) x i 1 50000 0 i d m P E ( p o s , i ) c o s ( p o s ⋅ x i ) i ⋅ s i n ( p o s ⋅ x i ) e i ⋅ p o s ⋅ x i PE_{(pos,i)} cos(\frac{pos}{500000^{\frac{i}{d_{m}}}})i\cdot sin(\frac{pos}{500000^{\frac{i}{d_{m}}}}) \\ x_{i} \frac{1}{500000^{\frac{i}{d_{m}}}} \\ PE_{(pos,i)} cos(pos \cdot x_{i})i\cdot sin(pos \cdot x_{i})e^{i \cdot pos \cdot x_{i}} PE(pos,i)cos(500000dmipos)i⋅sin(500000dmipos)xi500000dmi1PE(pos,i)cos(pos⋅xi)i⋅sin(pos⋅xi)ei⋅pos⋅xi
import math
import torch
import torch.nn.functional as F
from torch import nn
def precompute_freqs_cis(seq_len, dim, theta10000.0):计算 freqs_cis, 即 频率(frequencies) cis(cos isin)half_dim dim // 2 # RoPE的维度是极坐标是dim的1/2freqs 1.0 / (theta ** (torch.arange(0, half_dim) / half_dim))t torch.arange(seq_len) # type: ignorefreqs torch.outer(t, freqs) # type: ignorefreqs_cis torch.polar(torch.ones_like(freqs), freqs) # complex64return freqs_cis
def apply_rotary_emb(q, k, freqs_cis):# [2, 8, 10, 64] - [2, 8, 10, 32] (complex)xq torch.view_as_complex(q.reshape(*q.shape[:-1], -1, 2)) # 转换成 complex 形式xk torch.view_as_complex(k.reshape(*k.shape[:-1], -1, 2)) # 转换成 complex 形式# [2, 8, 10, 32, 2] - [2, 8, 10, 64]xq_out torch.view_as_real(xq * freqs_cis).flatten(3) # flatten 第3维度xk_out torch.view_as_real(xk * freqs_cis).flatten(3)return xq_out, xk_out
class MultiHeadAttention(nn.Module):多头自注意力机制 MultiHeadAttentiondef __init__(self, heads, d_model, dropout0.1):super().__init__()self.d_model d_modelself.d_k d_model // headsself.h headsself.q_linear nn.Linear(d_model, d_model)self.k_linear nn.Linear(d_model, d_model)self.v_linear nn.Linear(d_model, d_model)self.out nn.Linear(d_model, d_model)self.dropout nn.Dropout(dropout)staticmethoddef attention(q, k, v, d_k, maskNone, dropoutNone):scores torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)# 掩盖掉那些为了填补长度增加的单元使其通过 softmax 计算后为 0if mask is not None:mask mask.unsqueeze(1)scores scores.masked_fill(mask 0, -1e9)scores F.softmax(scores, dim-1)if dropout is not None:scores dropout(scores)output torch.matmul(scores, v)return outputdef forward(self, q, k, v, maskNone):bs q.size(0)s q.size(1)# 进行线性操作划分为成 h 个头k self.k_linear(k).view(bs, -1, self.h, self.d_k)q self.q_linear(q).view(bs, -1, self.h, self.d_k)v self.v_linear(v).view(bs, -1, self.h, self.d_k)# 矩阵转置k k.transpose(1, 2) # [bs,h,s,d] [2, 8, 10, 64]q q.transpose(1, 2)v v.transpose(1, 2)# 预计算 RoPE 频率freqs_cis precompute_freqs_cis(s, self.d_k) # output: [10, 32], i.e. [s,d_k//2]# 应用 RoPE 到 q 和 kq, k apply_rotary_emb(q, k, freqs_cis)# 计算 attentionattn self.attention(q, k, v, self.d_k, mask, self.dropout)# 连接多个头并输入到最后的线性层concat attn.transpose(1, 2).contiguous().view(bs, -1, self.d_model)output self.out(concat)return output
def main():# 设置超参数bs, s, h, d 2, 10, 8, 512dropout_rate 0.1# 创建 MultiHeadAttention 实例attention MultiHeadAttention(h, d, dropout_rate)# 创建随机输入张量q torch.randn(bs, s, d)k torch.randn(bs, s, d)v torch.randn(bs, s, d)# 可选创建掩码因果掩码上三角矩阵mask torch.tril(torch.ones(bs, s, s))# 测试无掩码的情况output_no_mask attention(q, k, v)print(Output shape without mask:, output_no_mask.shape)# 测试有掩码的情况output_with_mask attention(q, k, v, mask)print(Output shape with mask:, output_with_mask.shape)# 检查输出是否符合预期assert output_no_mask.shape (bs, s, d), Output shape is incorrect without maskassert output_with_mask.shape (bs, s, d), Output shape is incorrect with maskprint(Test passed!)
if __name__ __main__:main()2. 绝对位置编码 Absolute PE
Transformer 的 绝对位置编码(Absolute Positional Encoding) 公式在 Transformer 源码中超参数 θ 10000 \theta 10000 θ10000 p o s pos pos 是序列 s s s 的位置 i i i 是模型维度 d i m dim dim 的位置即 P E ( p o s , 2 i ) s i n ( p o s 1000 0 2 i d m ) P E ( p o s , 2 i 1 ) c o s ( p o s 1000 0 2 i d m ) A t t e n t i o n ( Q K V ) S o f t m a x ( ( Q P E ) ( K P E ) ⊤ d m ) ( V P E ) PE_{(pos,2i)}sin(\frac{pos}{10000^{\frac{2i}{d_{m}}}}) \\ PE_{(pos,2i1)}cos(\frac{pos}{10000^{\frac{2i}{d_{m}}}}) \\ Attention(QKV) Softmax(\frac{(QPE)(KPE)^{\top}}{\sqrt{d_{m}}})(VPE) PE(pos,2i)sin(10000dm2ipos)PE(pos,2i1)cos(10000dm2ipos)Attention(QKV)Softmax(dm (QPE)(KPE)⊤)(VPE) 注意在多头自注意力机制中位置编码的维度是 d m d_{m} dm直接加到输入 x ( q , k , v ) x(q,k,v) x(q,k,v)再进行线性变换(Linear)划分成多个 head 和 d k d_{k} dk 维度。 import math
import torch
import torch.nn.functional as F
from torch import nn
def get_positional_encoding(seq_len, dim, theta10000.0):计算 sin - cos 形式的绝对位置编码position torch.arange(0, seq_len)# 优化写法# div_term torch.exp(torch.arange(0, dim, 2) * -(math.log(theta) / dim))div_term 1.0 / torch.pow(theta, torch.arange(0, dim, 2) / dim)pe torch.zeros(seq_len, dim)pe[:, 0::2] torch.sin(torch.outer(position, div_term))pe[:, 1::2] torch.cos(torch.outer(position, div_term))return pe
class MultiHeadAttention(nn.Module):多头自注意力机制 MultiHeadAttentiondef __init__(self, heads, d_model, dropout0.1):super().__init__()self.d_model d_modelself.d_k d_model // headsself.h headsself.q_linear nn.Linear(d_model, d_model)self.k_linear nn.Linear(d_model, d_model)self.v_linear nn.Linear(d_model, d_model)self.out nn.Linear(d_model, d_model)self.dropout nn.Dropout(dropout)staticmethoddef attention(q, k, v, d_k, maskNone, dropoutNone):scores torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)# 掩盖掉那些为了填补长度增加的单元使其通过 softmax 计算后为 0if mask is not None:mask mask.unsqueeze(1)scores scores.masked_fill(mask 0, -1e9)scores F.softmax(scores, dim-1)if dropout is not None:scores dropout(scores)output torch.matmul(scores, v)return outputdef forward(self, q, k, v, maskNone):bs q.size(0)s q.size(1)# 计算 sin - cos 形式的绝对位置编码 [1, 10, 512] 自动广播 [2, 10, 512]pe get_positional_encoding(s, self.d_model)pe pe.unsqueeze(0) # 扩展维度以匹配 x 的形状# PyTorch 支持张量的广播应用绝对位置编码到 q, k, vq pek pev pe# 进行线性操作划分为成 h 个头k self.k_linear(k).view(bs, -1, self.h, self.d_k)q self.q_linear(q).view(bs, -1, self.h, self.d_k)v self.v_linear(v).view(bs, -1, self.h, self.d_k)# 矩阵转置k k.transpose(1, 2) # [bs,h,s,d] [2, 8, 10, 64]q q.transpose(1, 2)v v.transpose(1, 2)# 计算 attentionattn self.attention(q, k, v, self.d_k, mask, self.dropout)# 连接多个头并输入到最后的线性层concat attn.transpose(1, 2).contiguous().view(bs, -1, self.d_model)output self.out(concat)return output
def main():# 设置超参数bs, s, h, d 2, 10, 8, 512dropout_rate 0.1# 创建 MultiHeadAttention 实例attention MultiHeadAttention(h, d, dropout_rate)# 创建随机输入张量q torch.randn(bs, s, d)k torch.randn(bs, s, d)v torch.randn(bs, s, d)# 可选创建掩码因果掩码上三角矩阵mask torch.tril(torch.ones(bs, s, s))# 测试无掩码的情况output_no_mask attention(q, k, v)print(Output shape without mask:, output_no_mask.shape)# 测试有掩码的情况output_with_mask attention(q, k, v, mask)print(Output shape with mask:, output_with_mask.shape)# 检查输出是否符合预期assert output_no_mask.shape (bs, s, d), Output shape is incorrect without maskassert output_with_mask.shape (bs, s, d), Output shape is incorrect with maskprint(Test passed!)
if __name__ __main__:main()3. 相对位置编码 Relative PE
相对位置编码(Relative Positional Encoding简称 RPE 或 RePE)在 Transformer-XL 与 T5 中使用相对位置编码具体的实现方式较多核心是相对位置编码的索引矩阵 relative_indices [ 10 × 10 ] [10 \times 10] [10×10]范围是 [ 0 , 18 ] [0,18] [0,18]一共19个值即
[ 9, 8, 7, 6, 5, 4, 3, 2, 1, 0],
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1],
[11, 10, 9, 8, 7, 6, 5, 4, 3, 2],
[12, 11, 10, 9, 8, 7, 6, 5, 4, 3],
[13, 12, 11, 10, 9, 8, 7, 6, 5, 4],
[14, 13, 12, 11, 10, 9, 8, 7, 6, 5],
[15, 14, 13, 12, 11, 10, 9, 8, 7, 6],
[16, 15, 14, 13, 12, 11, 10, 9, 8, 7],
[17, 16, 15, 14, 13, 12, 11, 10, 9, 8],
[18, 17, 16, 15, 14, 13, 12, 11, 10, 9]索引矩阵的源码relative_indices torch.arange(s).unsqueeze(1) - torch.arange(s).unsqueeze(0) s - 1
参考 Tensor2Tensor 的 common_attention.py 实现方式注意只是其中一类即 A t t e n t i o n ( Q K V ) S o f t m a x ( Q K ⊤ d m R e P E i j ) V Attention(QKV) Softmax(\frac{QK^{\top}}{\sqrt{d_{m}}}RePE_{ij})V Attention(QKV)Softmax(dm QK⊤RePEij)V 即
import math
import torch
import torch.nn.functional as F
from torch import nn
def relative_positional_encoding(seq_len, dim, theta10000.0):# 计算位置编码索引参考 Absolute PE 公式relative_positions torch.arange(1 - seq_len, seq_len).unsqueeze(1) # [-9,9], 一共19个值# div_term torch.exp(torch.arange(0, dim, 2) * -(math.log(theta) / dim))div_term 1.0 / torch.pow(theta, torch.arange(0, dim, 2) / dim)pe torch.zeros(2 * seq_len - 1, dim)pe[:, 0::2] torch.sin(relative_positions * div_term)pe[:, 1::2] torch.cos(relative_positions * div_term)return pe
class MultiHeadAttention(nn.Module):多头自注意力机制 MultiHeadAttentiondef __init__(self, heads, d_model, dropout0.1):super().__init__()self.d_model d_modelself.d_k d_model // headsself.h headsself.q_linear nn.Linear(d_model, d_model)self.k_linear nn.Linear(d_model, d_model)self.v_linear nn.Linear(d_model, d_model)self.out nn.Linear(d_model, d_model)self.dropout nn.Dropout(dropout)staticmethoddef attention(q, k, v, d_k, maskNone, dropoutNone):bs, h, s, _ q.shape# 计算查询和键的注意力分数scores torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)# ---------- 相对位置编码 RePE ---------- #re_pe relative_positional_encoding(s, d_k) # [19, 64]# relative_indices 输出 0~18 的方阵 [s,s]re_indices torch.arange(s).unsqueeze(1) - torch.arange(s).unsqueeze(0) s - 1 # [10, 10]re re_pe[re_indices] # [10, 10, 64]# 爱因斯坦公式拆解: q 的维度 [2,8,10,64] - [10,2,8,64] - [10,16,64]# re 的维度 [10,10,64], 则 qz [10,16,10] - [10,2,8,10] - [2,8,10,10]re_scores torch.einsum(bhrd,rld-bhrl, q, re) # [2, 8, 10, 10]scores scores re_scores# ---------- 相对位置编码 RePE ---------- ## 掩盖掉那些为了填补长度增加的单元使其通过 softmax 计算后为 0if mask is not None:mask mask.unsqueeze(1)scores scores.masked_fill(mask 0, -1e9)scores F.softmax(scores, dim-1)if dropout is not None:scores dropout(scores)output torch.matmul(scores, v)return outputdef forward(self, q, k, v, maskNone):bs q.size(0)s q.size(1)# 进行线性操作划分为成 h 个头k self.k_linear(k).view(bs, -1, self.h, self.d_k)q self.q_linear(q).view(bs, -1, self.h, self.d_k)v self.v_linear(v).view(bs, -1, self.h, self.d_k)# 矩阵转置k k.transpose(1, 2) # [bs,h,s,d] [2, 8, 10, 64]q q.transpose(1, 2)v v.transpose(1, 2)# 计算注意力attn self.attention(q, k, v, self.d_k, mask, self.dropout)# 连接多个头并输入到最后的线性层concat attn.transpose(1, 2).contiguous().view(bs, -1, self.d_model)output self.out(concat)return output
def main():# 设置超参数bs, s, h, d 2, 10, 8, 512dropout_rate 0.1# 创建 MultiHeadAttention 实例attention MultiHeadAttention(h, d, dropout_rate)# 创建随机输入张量q torch.randn(bs, s, d)k torch.randn(bs, s, d)v torch.randn(bs, s, d)# 可选创建掩码因果掩码上三角矩阵mask torch.tril(torch.ones(bs, s, s))# 测试无掩码的情况output_no_mask attention(q, k, v)print(Output shape without mask:, output_no_mask.shape)# 测试有掩码的情况output_with_mask attention(q, k, v, mask)print(Output shape with mask:, output_with_mask.shape)# 检查输出是否符合预期assert output_no_mask.shape (bs, s, d), Output shape is incorrect without maskassert output_with_mask.shape (bs, s, d), Output shape is incorrect with maskprint(Test passed!)
if __name__ __main__:main()