当前位置: 首页 > news >正文

建立网站服务器怎么做淘宝客网站页面

建立网站服务器,怎么做淘宝客网站页面,深圳排名前十的跨境电商公司,给别人做网站如何收费1 前言 Hi#xff0c;大家好#xff0c;这里是丹成学长#xff0c;今天做一个 基于深度学习的水果识别demo 这是一个较为新颖的竞赛课题方向#xff0c;学长非常推荐#xff01; #x1f9ff; 更多资料, 项目分享#xff1a; https://gitee.com/dancheng-senior/pos…1 前言 Hi大家好这里是丹成学长今天做一个 基于深度学习的水果识别demo 这是一个较为新颖的竞赛课题方向学长非常推荐 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate 2 开发简介 深度学习作为机器学习领域内新兴并且蓬勃发展的一门学科 它不仅改变着传统的机器学习方法 也影响着我们对人类感知的理解 已经在图像识别和语音识别等领域取得广泛的应用。 因此 本文在深入研究深度学习理论的基础上 将深度学习应用到水果图像识别中 以此来提高了水果图像的识别性能。 3 识别原理 3.1 传统图像识别原理 传统的水果图像识别系统的一般过程如下图所示主要工作集中在图像预处理和特征提取阶段。 在大多数的识别任务中 实验所用图像往往是在严格限定的环境中采集的 消除了外界环境对图像的影响。 但是实际环境中图像易受到光照变化、 水果反光、 遮挡等因素的影响 这在不同程度上影响着水果图像的识别准确率。 在传统的水果图像识别系统中 通常是对水果的纹理、 颜色、 形状等特征进行提取和识别。 3.2 深度学习水果识别 CNN 是一种专门为识别二维特征而设计的多层神经网络 它的结构如下图所示这种结构对平移、 缩放、 旋转等变形具有高度的不变性。 学长本次采用的 CNN 架构如图 4 数据集 数据库分为训练集(train)和测试集(test)两部分 训练集包含四类apple,orange,banana,mixed(多种水果混合)四类237张图片测试集包含每类图片各两张。图片集如下图所示。 图片类别可由图片名称中提取。 训练集图片预览 测试集预览 数据集目录结构 5 部分关键代码 5.1 处理训练集的数据结构 import os import pandas as pd train_dir ./Training/ test_dir ./Test/ fruits [] fruits_image []for i in os.listdir(train_dir):for image_filename in os.listdir(train_dir i):fruits.append(i) # name of the fruitfruits_image.append(i / image_filename) train_fruits pd.DataFrame(fruits, columns[Fruits]) train_fruits[Fruits Image] fruits_imageprint(train_fruits)5.2 模型网络结构 ​ import matplotlib.pyplot as plt ​ import seaborn as sns ​ from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img ​ from glob import glob ​ from keras.models import Sequential ​ from keras.layers import Conv2D, MaxPooling2D, Activation, Dropout, Flatten, Dense ​ img load_img(train_dir Cantaloupe 1/r_234_100.jpg) ​ plt.imshow(img) ​ plt.axis(off) ​ plt.show() ​ array_image img_to_array(img)# shape (100,100)print(Image Shape -- , array_image.shape)# 131个类目fruitCountUnique glob(train_dir /* )numberOfClass len(fruitCountUnique)print(How many different fruits are there -- ,numberOfClass)# 构建模型model Sequential()model.add(Conv2D(32,(3,3),input_shape array_image.shape))model.add(Activation(relu))model.add(MaxPooling2D())model.add(Conv2D(32,(3,3)))model.add(Activation(relu))model.add(MaxPooling2D())model.add(Conv2D(64,(3,3)))model.add(Activation(relu))model.add(MaxPooling2D())model.add(Flatten())model.add(Dense(1024))model.add(Activation(relu))model.add(Dropout(0.5))# 区分131类model.add(Dense(numberOfClass)) # outputmodel.add(Activation(softmax))model.compile(loss categorical_crossentropy,optimizer rmsprop,metrics [accuracy])print(Target Size -- , array_image.shape[:2])## 5.3 训练模型 ​ train_datagen ImageDataGenerator(rescale 1./255, ​ shear_range 0.3, ​ horizontal_flipTrue, ​ zoom_range 0.3) ​ test_datagen ImageDataGenerator(rescale 1./255)epochs 100batch_size 32train_generator train_datagen.flow_from_directory(train_dir,target_size array_image.shape[:2],batch_size batch_size,color_mode rgb,class_mode categorical)test_generator test_datagen.flow_from_directory(test_dir,target_size array_image.shape[:2],batch_size batch_size,color_mode rgb,class_mode categorical)for data_batch, labels_batch in train_generator:print(data_batch shape -- ,data_batch.shape)print(labels_batch shape -- ,labels_batch.shape)breakhist model.fit_generator(generator train_generator,steps_per_epoch 1600 // batch_size,epochsepochs,validation_data test_generator,validation_steps 800 // batch_size)#保存模型 model_fruits.h5model.save(model_fruits.h5) 顺便输出训练曲线 ​ #展示损失模型结果 ​ plt.figure() ​ plt.plot(hist.history[loss],label Train Loss, color black) ​ plt.plot(hist.history[val_loss],label Validation Loss, color darkred, linestyledashed,markeredgecolor purple, markeredgewidth 2) ​ plt.title(Model Loss, color darkred, size 13) ​ plt.legend() ​ plt.show() ​ #展示精确模型结果plt.figure()plt.plot(hist.history[accuracy],label Train Accuracy, color black)plt.plot(hist.history[val_accuracy],label Validation Accuracy, color darkred, linestyledashed,markeredgecolor purple, markeredgewidth 2)plt.title(Model Accuracy, color darkred, size 13)plt.legend()plt.show()![在这里插入图片描述](https://img-blog.csdnimg.cn/686ace7db27c4145837ec2e09e8ad917.png?x-oss-processimage/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBARGFuQ2hlbmctc3R1ZGlv,size_17,color_FFFFFF,t_70,g_se,x_16)6 识别效果 from tensorflow.keras.models import load_model import os import pandas as pd from keras.preprocessing.image import ImageDataGenerator,img_to_array, load_img import cv2,matplotlib.pyplot as plt,numpy as np from keras.preprocessing import imagetrain_datagen ImageDataGenerator(rescale 1./255,shear_range 0.3,horizontal_flipTrue,zoom_range 0.3)model load_model(model_fruits.h5) batch_size 32 img load_img(./Test/Apricot/3_100.jpg,target_size(100,100)) plt.imshow(img) plt.show()array_image img_to_array(img) array_image array_image * 1./255 x np.expand_dims(array_image, axis0) images np.vstack([x]) classes model.predict_classes(images, batch_size10) print(classes) train_dir ./Training/train_generator train_datagen.flow_from_directory(train_dir,target_size array_image.shape[:2],batch_size batch_size,color_mode rgb,class_mode categorical”) print(train_generator.class_indices)​ ​ fig plt.figure(figsize(16, 16))axes []files []predictions []true_labels []rows 5cols 2 # 随机选择几个图片 def getRandomImage(path, img_width, img_height):function loads a random image from a random folder in our test pathfolders list(filter(lambda x: os.path.isdir(os.path.join(path, x)), os.listdir(path)))random_directory np.random.randint(0, len(folders))path_class folders[random_directory]file_path os.path.join(path, path_class)file_names [f for f in os.listdir(file_path) if os.path.isfile(os.path.join(file_path, f))]random_file_index np.random.randint(0, len(file_names))image_name file_names[random_file_index]final_path os.path.join(file_path, image_name)return image.load_img(final_path, target_size (img_width, img_height)), final_path, path_classdef draw_test(name, pred, im, true_label):BLACK [0, 0, 0]expanded_image cv2.copyMakeBorder(im, 160, 0, 0, 300, cv2.BORDER_CONSTANT, valueBLACK)cv2.putText(expanded_image, predicted: pred, (20, 60), cv2.FONT_HERSHEY_SIMPLEX,0.85, (255, 0, 0), 2)cv2.putText(expanded_image, true: true_label, (20, 120), cv2.FONT_HERSHEY_SIMPLEX,0.85, (0, 255, 0), 2)return expanded_image IMG_ROWS, IMG_COLS 100, 100# predicting images for i in range(0, 10):path ./Testimg, final_path, true_label getRandomImage(path, IMG_ROWS, IMG_COLS)files.append(final_path)true_labels.append(true_label)x image.img_to_array(img)x x * 1./255x np.expand_dims(x, axis0)images np.vstack([x])classes model.predict_classes(images, batch_size10)predictions.append(classes)class_labels train_generator.class_indices class_labels {v: k for k, v in class_labels.items()} class_list list(class_labels.values())for i in range(0, len(files)):image cv2.imread(files[i])image draw_test(Prediction, class_labels[predictions[i][0]], image, true_labels[i])axes.append(fig.add_subplot(rows, cols, i1))plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))plt.grid(False)plt.axis(off) plt.show()7 最后 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate
http://www.tj-hxxt.cn/news/217718.html

相关文章:

  • seo整站优化什么价格教育机构线上推广方案
  • 企业网站托管方式宿迁华夏建设集团网站
  • 怎么才能找到想做网站建设的客源个人网页设计界面
  • 在线公司网站查询虚拟主机WordPress建站
  • 网站访问速度检测怎么做公众号推文
  • 知名企业门户网站建设服务公司WordPress手机端底部悬浮窗
  • 快速网站推广优化php工具箱是直接做网站的吗
  • 作文网投稿网站视频拍摄手法
  • 司法行政网站建设目的网站跳出
  • 医疗网站建设服务建网站找兴田德润
  • 网站服务器租用怎样收费企业网页设计公司
  • 建设专业网站运营团队做网站不用服务器
  • 2021拉新推广佣金排行榜seo标题优化的心得总结
  • 潜江做网站的公司有哪些个人网站开发盈利模式
  • 曲阳网站建设邯郸开发网站有哪些
  • 同行抄袭公司网站网站生成静态
  • 公司主营业务网站建设工邦邦官网
  • 重庆广告公司网站建设域名历史价格查询
  • 做网站都用什么技术30天网站建设全程实录
  • 设计好的建设网站网站后台管理要求
  • 网站关键词库怎么做有什么效果定陶菏泽网站建设
  • asp网站仿制南京快速建站模板下载
  • 网上做调查问卷赚钱的网站中国建设银行信用卡积分兑换网站
  • 建设网站一般过程网站模版如何使用
  • 微信导航网站怎么做前端菜鸟教程
  • 电商网站开发的流程图两网站会员同步
  • 网站策划书的撰写流程wordpress菜单.html
  • 一级a做爰片免费网站国语版的我做网站了 圆通
  • 网站设计师英文wordpress主题 榆次
  • 可以免费创建网站的软件北京免费网站建设