当前位置: 首页 > news >正文

惠州东莞网站建设专业seo排名优化费用

惠州东莞网站建设,专业seo排名优化费用,软件测试的基本流程,ps网站头部Pytorch中张量矩阵乘法函数使用说明 1 torch.mm() 函数1.1 torch.mm() 函数定义及参数1.2 torch.bmm() 官方示例 2 torch.bmm() 函数2.1 torch.bmm() 函数定义及参数2.2 torch.bmm() 官方示例 3 torch.matmul() 函数3.1 torch.matmul() 函数定义及参数3.2 torch.matmul() 规则约…

Pytorch中张量矩阵乘法函数使用说明

  • 1 torch.mm() 函数
    • 1.1 torch.mm() 函数定义及参数
    • 1.2 torch.bmm() 官方示例
  • 2 torch.bmm() 函数
    • 2.1 torch.bmm() 函数定义及参数
    • 2.2 torch.bmm() 官方示例
  • 3 torch.matmul() 函数
    • 3.1 torch.matmul() 函数定义及参数
    • 3.2 torch.matmul() 规则约定
    • 3.3 torch.matmul() 官方示例
    • 3.4 高维数据实例解释
  • 参考博文及感谢

1 torch.mm() 函数

全称为matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是2维

1.1 torch.mm() 函数定义及参数

torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的矩阵
** mat2
* (Tensor) – – 第二个要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

1.2 torch.bmm() 官方示例

mat1 = torch.randn(2, 3)
mat2 = torch.randn(3, 3)
torch.mm(mat1, mat2)tensor([[ 0.4851,  0.5037, -0.3633],[-0.0760, -3.6705,  2.4784]])

2 torch.bmm() 函数

全称为batch matrix-matrix product,对输入的张量做矩阵乘法运算,输入输出维度一定是3维;

2.1 torch.bmm() 函数定义及参数

torch.bmm(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一批要相乘的矩阵
** mat2
* (Tensor) – – 第二批要相乘的矩阵
不支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

2.2 torch.bmm() 官方示例

input = torch.randn(10, 3, 4)
mat2 = torch.randn(10, 4, 5)
res = torch.bmm(input, mat2)
res.size()torch.Size([10, 3, 5])

3 torch.matmul() 函数

可进行多维矩阵运算,根据不同输入维度进行广播机制然后运算,和点积类似,广播机制可参考之前博文torch.mul()函数。

3.1 torch.matmul() 函数定义及参数

torch.matmul(input, mat2, , out=None) → Tensor
input (Tensor) – – 第一个要相乘的张量
** mat2
* (Tensor) – – 第二个要相乘的张量
支持广播到通用形状、类型推广以及整数、浮点和复杂输入。

3.2 torch.matmul() 规则约定

(1)若两个都是1D(向量)的,则返回两个向量的点积;

(2)若两个都是2D(矩阵)的,则按照(矩阵相乘)规则返回2D;

(3)若input维度1D,other维度2D,则先将1D的维度扩充到2D(1D的维数前面+1),然后得到结果后再将此维度去掉,得到的与input的维度相同。即使作扩充(广播)处理,input的维度也要和other维度做对应关系;

(4)若input是2D,other是1D,则返回两者的点积结果;

(5)如果一个维度至少是1D,另外一个大于2D,则返回的是一个批矩阵乘法( a batched matrix multiply)

  • (a)若input是1D,other是大于2D的,则类似于规则(3);
  • (b)若other是1D,input是大于2D的,则类似于规则(4);
  • (c)若input和other都是3D的,则与torch.bmm()函数功能一样;
  • (d)如果input中某一维度满足可以广播(扩充),那么也是可以进行相乘操作的。例如 input(j,1,n,m)* other (k,m,p) = output(j,k,n,p)

matmul() 根据输入矩阵自动决定如何相乘。低维根据高维需求,合理广播。

3.3 torch.matmul() 官方示例

# vector x vector
tensor1 = torch.randn(3)
tensor2 = torch.randn(3)
torch.matmul(tensor1, tensor2).size()torch.Size([])
# matrix x vector
tensor1 = torch.randn(3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([3])
# batched matrix x broadcasted vector
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3])
# batched matrix x batched matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(10, 4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])
# batched matrix x broadcasted matrix
tensor1 = torch.randn(10, 3, 4)
tensor2 = torch.randn(4, 5)
torch.matmul(tensor1, tensor2).size()torch.Size([10, 3, 5])

3.4 高维数据实例解释

直接看一个4维的二值例子,先看图(红虚线和实线是为了便于区分维度而添加),不懂再结合代码和结果分析,先做广播,然后对应矩阵进行乘积运算
在这里插入图片描述

代码如下:

import torch
import numpy as npnp.random.seed(2022)
a = np.random.randint(low=0, high=2, size=(2, 2, 3, 4))
a = torch.tensor(a)
b = np.random.randint(low=0, high=2, size=(2, 1, 4, 3))
b = torch.tensor(b)
c = torch.matmul(a, b)
# or
# c = a @ b
print(a)
print("=============================================")
print(b)
print("=============================================")
print(c.size())
print("=============================================")
print(c)

运行结果为:

tensor([[[[1, 0, 1, 0],[1, 1, 0, 1],[0, 0, 0, 0]],[[1, 1, 1, 1],[1, 1, 0, 0],[0, 1, 0, 1]]],[[[0, 0, 0, 1],[0, 0, 0, 1],[0, 1, 0, 0]],[[1, 1, 1, 1],[1, 1, 1, 1],[0, 0, 0, 0]]]], dtype=torch.int32)
=============================================
tensor([[[[0, 1, 0],[1, 1, 0],[0, 0, 0],[1, 1, 0]]],[[[0, 1, 0],[1, 1, 1],[1, 1, 1],[1, 0, 1]]]], dtype=torch.int32)
=============================================
torch.Size([2, 2, 3, 3])
=============================================
tensor([[[[0, 1, 0],[2, 3, 0],[0, 0, 0]],[[2, 3, 0],[1, 2, 0],[2, 2, 0]]],[[[1, 0, 1],[1, 0, 1],[1, 1, 1]],[[3, 3, 3],[3, 3, 3],[0, 0, 0]]]], dtype=torch.int32)

参考博文及感谢

部分内容参考以下链接,这里表示感谢 Thanks♪(・ω・)ノ
参考博文1 官方文档查询地址
https://pytorch.org/docs/stable/index.html
参考博文2 Pytorch矩阵乘法之torch.mul() 、 torch.mm() 及torch.matmul()的区别
https://blog.csdn.net/irober/article/details/113686080

http://www.tj-hxxt.cn/news/20287.html

相关文章:

  • h5彩票网站怎么做网站制作公司排行榜
  • 做网站 科目百度平台商家我的订单查询
  • 上海网站建设基础seo快排优化
  • 网站建设的关键词百度小程序优化
  • 只做正品的购物网站seo快速排名软件推荐
  • 上海 科技网站建设百度推荐现在为什么不能用了
  • 上海网站备案多久河北百度seo关键词
  • 系统网站建设ppt旧版优化大师
  • 政府网站建设思路站长工具站长之家官网
  • 做网站之前需要准备什么软件企业关键词大全
  • dw可以做有后台的网站么无锡seo排名收费
  • 望京做网站的公司推广软文是什么
  • 百度网站建设关键词排名怎样
  • 企业网站制作公司网站在线客服系统源码
  • wordpress 专业模板电商中seo是什么意思
  • 网站修改备案号windows优化大师是哪个公司的
  • 怎么优化推广自己的网站百度地图排名怎么优化
  • 专业零基础网站建设教学公司开网站需要多少钱
  • 邢台人民网站广告关键词有哪些
  • 网站运营改进的点百度指数在线查询
  • 营销网页制作seo优化是什么意思
  • seo和sem的概念惠州seo按天计费
  • 做一网站多少钱百度推广每年600元什么费用
  • 长沙建网站需要多少钱国际最新新闻
  • 做网站虚拟主机可以用服务器吗百度联盟点击广告赚钱
  • 哈尔滨网站建设费用下载班级优化大师app
  • web2.0网站开发d公司网站设计哪家好
  • 炉火建站免费html网站制作成品
  • 镇江企业做网站手机网站建设价格
  • 做网站收费上海市人大常委会