当前位置: 首页 > news >正文

做细分领域的同城网站靠谱seo整站优化外包

做细分领域的同城网站,靠谱seo整站优化外包,十堰网站建设专家,2019做网站# 新的数据格式,csv纯文本,使用某个字符集,比如都是ASCII、Unicode、EBCDIC或GB2312(简体中文环境)等;由记录组成(典型的是每行一条记录)每条记录被分隔符(英语&#xff…
# 新的数据格式,csv
  • 纯文本,使用某个字符集,比如都是ASCII、Unicode、EBCDIC或GB2312(简体中文环境)等;
  • 由记录组成(典型的是每行一条记录)
  • 每条记录被分隔符(英语:Delimiter)分隔为字段(英语:Field(computer science))(典型分隔符号有逗号、分号或制表符;有时分隔符可以包括可选的空格)
  • 每条记录都有同样的字段序列
import pandas as pd 
import numpy as np
abs_path = r'F:\Python\learn\python附件\pythonCsv\data.csv'
df = pd.read_csv(abs_path,encoding='gbk')
df.head(2)
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
12韩辉909575758085
type(df)
pandas.core.frame.DataFrame

DataFrame

# 列名
print(df.columns)
# 索引
print(df.index)
Index(['序号', '姓名', '性别', '语文', '数学', '英语', '物理', '化学', '生物'], dtype='object')
RangeIndex(start=0, stop=7, step=1)
df.loc[0]
序号      1
姓名    渠敬辉
性别      男
语文     80
数学     60
英语     30
物理     40
化学     30
生物     60
Name: 0, dtype: object
a = np.array(range(10))
a > 3
array([False, False, False, False,  True,  True,  True,  True,  True,True])
# 筛选数学成绩大于80
df[df.数学 > 80]
序号姓名性别语文数学英语物理化学生物
12韩辉909575758085
34石天洋909095807580
df[df.数学 < 80]
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
45张三606060606060
67王五707070707070
# 复杂筛选
df[(df.语文 > 80) & (df.数学 > 80) & (df.英语 > 80)]
序号姓名性别语文数学英语物理化学生物
34石天洋909095807580

排序

df.sort_values(['数学','语文','英语']).head()
序号姓名性别语文数学英语物理化学生物
45张三606060606060
01渠敬辉806030403060
67王五707070707070
56李四808080808080
23韩文晴958085608090

访问

# 按照索引去定位
df.loc[3]
序号      4
姓名    石天洋
性别      男
语文     90
数学     90
英语     95
物理     80
化学     75
生物     80
Name: 3, dtype: object

索引

scores = {'英语':[90,78,89],'数学':[64,78,45],'姓名':['wong','li','sun']
}
df = pd.DataFrame(scores,index=['one','two','three'])
df
英语数学姓名
one9064wong
two7878li
three8945sun
df.index
Index(['one', 'two', 'three'], dtype='object')
# 因为此时不存在数字索引,所以不能通过数字索引去访问
# df.loc[1]
df.loc['one']
英语      90
数学      64
姓名    wong
Name: one, dtype: object
# 实实在在的所谓的第几行
df.iloc[0]
英语      90
数学      64
姓名    wong
Name: one, dtype: object
# 合并了loc和iloc的功能,新版本下ix方法已被弃用
df.ix[0]
---------------------------------------------------------------------------AttributeError                            Traceback (most recent call last)<ipython-input-22-413c174d3cd1> in <module>1 # 合并了loc和iloc的功能
----> 2 df.ix[0]G:\Anaconda\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)5272             if self._info_axis._can_hold_identifiers_and_holds_name(name):5273                 return self[name]
-> 5274             return object.__getattribute__(self, name)5275 5276     def __setattr__(self, name: str, value) -> None:AttributeError: 'DataFrame' object has no attribute 'ix'
df.loc[:2]
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
12韩辉909575758085
23韩文晴958085608090
# 当索引为数字索引的时候,ix和loc是等价的,新版本下ix方法已被弃用
df.ix[:2]
---------------------------------------------------------------------------AttributeError                            Traceback (most recent call last)<ipython-input-33-a97de2692f80> in <module>1 #当索引为数字索引的时候,ix和loc是等价的
----> 2 df.ix[:2]G:\Anaconda\lib\site-packages\pandas\core\generic.py in __getattr__(self, name)5272             if self._info_axis._can_hold_identifiers_and_holds_name(name):5273                 return self[name]
-> 5274             return object.__getattribute__(self, name)5275 5276     def __setattr__(self, name: str, value) -> None:AttributeError: 'DataFrame' object has no attribute 'ix'
# 访问某一行,是错误的
# df[0]# 访问多行数据是可以使用切片的
df[:2]
序号姓名性别语文数学英语物理化学生物
01渠敬辉806030403060
12韩辉909575758085
# dataframe中的数组
df.数学.values
array([60, 95, 80, 90, 60, 80, 70], dtype=int64)
# 简单的统计
df.数学.value_counts()
60    2
80    2
95    1
70    1
90    1
Name: 数学, dtype: int64
# 提取多列
new = df[['数学','语文']].head()
new
数学语文
06080
19590
28095
39090
46060
new * 2
数学语文
0120160
1190180
2160190
3180180
4120120

重点

def func(score):if score>=80:return '优秀'elif score>=70:return '良'elif score>=60:return '及格'else:return '不及格'passdf['数学分类'] = df.数学.map(func)
df.head()
序号姓名性别语文数学英语物理化学生物数学分类
01渠敬辉806030403060及格
12韩辉909575758085优秀
23韩文晴958085608090优秀
34石天洋909095807580优秀
45张三606060606060及格
# applymap对dataframe中所有的数据进行操作的一个函数,非常重要
def func(number):return number + 10
# 等价
func = lambda number : number + 10df.applymap(lambda x : str(x) + ' - ').head(2)
序号姓名性别语文数学英语物理化学生物数学分类
01 -渠敬辉 -男 -80 -60 -30 -40 -30 -60 -及格 -
12 -韩辉 -男 -90 -95 -75 -75 -80 -85 -优秀 -

匿名函数

# 列表推导式
[i+100 for i in range(10)]
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
def func(x):return x + 100
list(map(func,range(10)))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
# 匿名函数的使用条件:
# 1.函数就一行
# 2.函数不经常使用
# 3.函数没有必要取名字
list(map(lambda x : x+100,range(10)))
[100, 101, 102, 103, 104, 105, 106, 107, 108, 109]
# apply根据多列生成新的一个列的操作,用apply
df['new_score'] = df.apply(lambda x : x.数学 + x.语文, axis=1)
# 前几行
df.head(2)
# 最后几行
df.tail(2)
序号姓名性别语文数学英语物理化学生物数学分类new_score
56李四808080808080优秀160
67王五707070707070140

panda中的dataframe的操作,很大一部分跟numpy中的二位数组的操作是近似的

http://www.tj-hxxt.cn/news/17471.html

相关文章:

  • 买目录做网站竞彩足球最新比赛
  • dwcc怎么做网站网站开发技术有哪些
  • 西青做网站网站制作免费
  • 医院网站制作公司重庆网站seo外包
  • 个人备案可以做哪些网站网站seo课设
  • 网站建设考试多选题seo实战论坛
  • 淘宝客怎样做自己的网站推广中视频自媒体平台注册官网
  • 我的个人网页图片开鲁网站seo不用下载
  • 自己提供域名做网站免费换友情链接
  • 外贸网站教程北京百度推广排名优化
  • 北京做网站建设公司企业推广方法
  • 建e室内设计网app陕西seo关键词优化外包
  • 东莞住房建设网站的网百度识图在线识图
  • wordpress资源源码深圳seo
  • wordpress 手机站插件seo研究所
  • 广水网站定制aso应用优化
  • 网站哪些付款二维码是怎么做的seo谷歌
  • 自己做视频网站的流程百度认证平台官网
  • 网站建设咨询电话网站推广系统方案
  • 公司网站建设包括怎么创建网页链接
  • 开发网站性能监控seo搜索引擎优化求职简历
  • 郑州网站关qq空间刷赞推广网站
  • 常见的网页布局结构有哪些搜索引擎网站优化和推广方案
  • 主题 外贸网站 模板龙岗网站建设公司
  • 党课网络培训网站建设功能需求分析北京网站优化公司
  • 贵南县网站建设公司网络营销成功案例介绍
  • wordpress增加侧边栏排名优化公司口碑哪家好
  • 做网站色弱可以吗百度客服联系方式
  • 太原网站制作哪家便宜营销页面设计
  • 计算机网络技术是干什么的网站seo查询工具