当前位置: 首页 > news >正文

网站icp备案申请韩国比分预测

网站icp备案申请,韩国比分预测,杭州p2p网站开发商,化妆品网站建设流程图YOLOv8目标检测(一)_检测流程梳理:YOLOv8目标检测(一)_检测流程梳理_yolo检测流程-CSDN博客 YOLOv8目标检测(二)_准备数据集:YOLOv8目标检测(二)_准备数据集_yolov8 数据集准备-CSDN博客 YOLOv8目标检测(三)_训练模型:YOLOv8目标检测(三)_训…

YOLOv8目标检测(一)_检测流程梳理:YOLOv8目标检测(一)_检测流程梳理_yolo检测流程-CSDN博客

YOLOv8目标检测(二)_准备数据集:YOLOv8目标检测(二)_准备数据集_yolov8 数据集准备-CSDN博客

YOLOv8目标检测(三)_训练模型:YOLOv8目标检测(三)_训练模型_yolo data.yaml-CSDN博客

YOLOv8目标检测(三*)_最佳超参数训练:YOLOv8目标检测(三*)_最佳超参数训练_yolo 为什么要选择yolov8m.pt进行训练-CSDN博客

YOLOv8目标检测(四)_图片推理:YOLOv8目标检测(四)_图片推理-CSDN博客

YOLOv8目标检测(五)_结果文件(run/detrct/train)详解:YOLOv8目标检测(五)_结果文件(run/detrct/train)详解_yolov8 yolov8m.pt可以训练什么-CSDN博客

YOLOv8目标检测(六)_封装API接口:YOLOv8目标检测(六)_封装API接口-CSDN博客

YOLOv8目标检测(七)_AB压力测试:YOLOv8目标检测(七)_AB压力测试-CSDN博客

经过之前的几篇文章,各位读者应该训练好了自己的模型,那么如何验证下效果呢?

这篇文章与各位读者分享如何用模型推理图片

之前我们对数据集进行了82分(也可以91),8是训练集、2是验证集,其实用于训练的比例是80%,反正验证集没有被训练到模型里面,直接用验证集作为测试集不是更好?

答案是:绝对不行!**测试集数据要独立于训练集!!**这里分享下自己对训练集、验证集、测试集的理解供各位参考。

1)训练集:用于训练模型,即让模型通过数据学习到如何预测目标。确定模型权重、偏置等学习参数(学习

2)验证集:用于模型选择和超参数调整。验证集帮助我们避免过拟合,并选择最佳的模型参数和结构。(小考

3)测试集:用于最终评估模型的泛化能力。不参与学习参数过程,也不参与超参数选择过程(高考

解释完概念,各位读者是否更清晰、更坚定了,“用验证集测试它没毛病”,绝对不行奥!笔者是这样理解的:

当模型根据验证集上的表现进行微调时,它实际上是在对模型参数进行小幅度的调整,以便更好地适应验证集上的数据分布和特征。这个过程中,模型可能会“记住”验证集的一些特征,但这并不是指模型像背诵课文那样记住验证集中的具体数据点,而是指模型通过调整其内部参数来更好地拟合验证集上的数据分布和模式。

懵懵的?进一步解释这种“记住”的特征:

1)数据特征:模型可能会学习到验证集上数据的整体分布,如数据的均值、方差、类别比例等。这些信息有助于模型在后续对未知数据进行预测时做出更准确的判断。

2)特征重要性:模型可能会根据验证集上的表现,调整不同特征在预测中的权重。一些在验证集上表现较好的特征可能会被赋予更高的权重,而一些表现较差的特征则可能会被降低权重或忽略。

3)类别边界:对于分类任务,模型可能会根据验证集上的数据点,调整不同类别之间的边界。这有助于模型在后续对未知数据进行分类时,更准确地判断其所属的类别。

好好好,我的朋友,就知道你还是懵懵的,通俗点:

举个例子,假如小鑫的工作是给文件盖章,他刚接触工作时,可能还要看一下这张纸内容,在哪里盖章,干了一段时间之后,他知道了,其实这种文件,百分之90都在右下角盖章,那么他这个盖章的手就放在右下方准备着盖。

验证集虽然没有被用于训练集真正训练,但是验证集给了模型一个“大方向”,用验证集作为测试集,是不可取的。

以上理解可能不是很权威,希望各位读者批评指正!

1.准备测试集

如果你的数据集数量比较多,可以直接将训练集、验证集、测试集分好,推荐7:2:1。

测试集覆盖场景要丰富全面。

最好将正样本图片和负样本图片分别命名,养成好习惯,方便后期梳理调优,如

2.运行预测命令

yolo predict model=。/your_best.pt source='./your_test_images' save=True save_txt=True

运行成功后结果如下:

3.查看结果文件

可以看到

(1)图片保存在runs/detect/predict2

(2)标签保存在runs/detect/predict2/labels

4.小技巧

当数据量过多时,可以先用自己标注的少部分数据训练一个模型,然后用这个模型推理剩余数据。

假如数据10000张,小技巧流程大致如下:

(1)标注1000张

(2)训练模型得到best_v1.pt

(3)使用best_v1.pt运行推理命令得到txt

推理后的图片,肯定需要修改,因为数据量小,模型学习还不完善。

(4)校验

打开labelimg,选择推理后的txt,大部分其实已经可以了,校验细节即可。

(5)训练best_last.pt

将10000张数据全部训练。

http://www.tj-hxxt.cn/news/16343.html

相关文章:

  • 带数据库的网站怎么建搜索引擎营销的英文简称
  • 小程序定制开发多少钱一年seo门户网站
  • 网站源码整站下载厦门seo网络推广
  • 专门做网站开发的公司seo网站搭建是什么
  • 礼品网站制作网站搭建关键词排名
  • 网站建设与管理实用教程杭州seo搜索引擎优化
  • 网站整站资源下载器破解版 无任何功能限制百度旧版本下载
  • 永康网站优化品牌运营策略
  • wordpress 中文开发网站点击排名优化
  • 自己建网站还是淘宝百度优化推广
  • wordpress标题关键词描述香港seo公司
  • 网站设计哪家公司好深圳媒体网络推广有哪些
  • 什么网站做执法仪重庆seo推广公司
  • 微信投票网站怎么做seo技术培训教程
  • 做网站蓝色和什么颜色网站营销推广
  • 如何注册网站.cn百度如何优化
  • 充值网站怎么做b2b电子商务网站
  • wordpress后台不能登陆成都外贸seo
  • 优秀flash网站设计自己怎么做引流推广
  • 网络创建公司网站网络营销课程个人总结
  • 开发app软件需要多少钱seo推广收费标准
  • 上海企业地址大全seo教程培训
  • 中国科协网站建设招标网络平台有哪些
  • 服务器 wordpress 邮件设置优化网站页面
  • 做ps赚钱网站有哪些襄阳百度开户
  • 校园网站建设媒体营销
  • 广州平面设计seo优化中商品权重主要由什么决定
  • 北京做视觉网站seo排名赚app下载
  • 北京网站开发招聘seo外包优化
  • 天元网游关服了吗信阳网站seo