当前位置: 首页 > news >正文

欧派网站谁做的对网站提出的优化建议

欧派网站谁做的,对网站提出的优化建议,基于html5的旅游网页设计毕业论文,上海做推广网站🧡💛💚TensorFlow2实战-系列教程 总目录 有任何问题欢迎在下面留言 本篇文章的代码运行界面均在Jupyter Notebook中进行 本篇文章配套的代码资源已经上传 Resnet实战1 Resnet实战2 Resnet实战3 4、训练脚本train.py解读------创建模型 def …

🧡💛💚TensorFlow2实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Jupyter Notebook中进行
本篇文章配套的代码资源已经上传

Resnet实战1
Resnet实战2
Resnet实战3

4、训练脚本train.py解读------创建模型

def get_model():model = resnet50.ResNet50()if config.model == "resnet34":model = resnet34.ResNet34()if config.model == "resnet101":model = resnet101.ResNet101()if config.model == "resnet152":model = resnet152.ResNet152()model.build(input_shape=(None, config.image_height, config.image_width, config.channels))model.summary()tf.keras.utils.plot_model(model, to_file='model.png')return model# create model
model = get_model()

调用get_model()函数构建模型

get_model()函数:

  1. 通过resnet50.py调用ResNet50类,构建ResNet50模型
  2. 如果在配置参数中设置的是"resnet34"、“resnet101”、“resnet152”,则会对应使用(resnet34.py调用ResNet34类,构建ResNet34模型)、(resnet101.py调用ResNet101类,构建ResNet101模型)、(resnet152.py调用ResNet152类,构建ResNet152模型)
  3. 准备模型以供训练或评估,
  4. 输出模型的概览
  5. 创建了模型的结构图,plot_model 函数从 Keras 工具包中生成模型的可视化表示,指定了保存路径

5、模型构建解析------models/resnet50.py

import tensorflow as tf
from models.residual_block import build_res_block_2
from config import NUM_CLASSESclass ResNet50(tf.keras.Model):def __init__(self, num_classes=NUM_CLASSES):super(ResNet50, self).__init__()self.pre1 = tf.keras.layers.Conv2D(filters=64, kernel_size=(7, 7), strides=2, padding='same')self.pre2 = tf.keras.layers.BatchNormalization()self.pre3 = tf.keras.layers.Activation(tf.keras.activations.relu)self.pre4 = tf.keras.layers.MaxPool2D(pool_size=(3, 3), strides=2)self.layer1 = build_res_block_2(filter_num=64, blocks=3)self.layer2 = build_res_block_2(filter_num=128, blocks=4, stride=2)self.layer3 = build_res_block_2(filter_num=256, blocks=6, stride=2)self.layer4 = build_res_block_2(filter_num=512, blocks=3, stride=2)self.avgpool = tf.keras.layers.GlobalAveragePooling2D()self.fc1 = tf.keras.layers.Dense(units=1000, activation=tf.keras.activations.relu)self.drop_out = tf.keras.layers.Dropout(rate=0.5)self.fc2 = tf.keras.layers.Dense(units=num_classes, activation=tf.keras.activations.softmax)def call(self, inputs, training=None, mask=None):pre1 = self.pre1(inputs)pre2 = self.pre2(pre1, training=training)pre3 = self.pre3(pre2)pre4 = self.pre4(pre3)l1 = self.layer1(pre4, training=training)l2 = self.layer2(l1, training=training)l3 = self.layer3(l2, training=training)l4 = self.layer4(l3, training=training)avgpool = self.avgpool(l4)fc1 = self.fc1(avgpool)drop = self.drop_out(fc1)out = self.fc2(drop)return out

class ResNet50(tf.keras.Model),这个类定义了ResNet50模型的结构,以及前向传播的方式、顺序

ResNet50类解析:

  1. 构造函数,传入了预测的类别数
  2. 初始化
  3. pre1 ,定义一个二维卷积,输出64个特征图,7x7的卷积,步长为2
  4. pre2 ,定义一个批归一化
  5. pre3,定义一个ReLU激活函数
  6. pre4,一个二维的最大池化
  7. 依次通过build_res_block_2()函数定义4个残差块
  8. 定义一个全局平均池化
  9. 定义一个全连接层,输出维度为1000
  10. 定义一个dropout
  11. 定义一个输出层的全连接层
  12. 前向传播函数,传入输入值
  13. 依次经过pre1、pre2、pre3、pre4,即卷积、批归一化、ReLU、最大池化
  14. 依次经过layer1 、layer2 、layer3 、layer4 等四个残差块
  15. 将layer4 的输出经过平局池化
  16. 依次经过两个全连接层

6、模型构建解析------models/residual_block.py

  • BottleNeck类
  • build_res_block_2()函数
  • build_res_block_2()函数通过调用BottleNeck类构建残差块
class BottleNeck(tf.keras.layers.Layer):def __init__(self, filter_num, stride=1,with_downsample=True):super(BottleNeck, self).__init__()self.with_downsample = with_downsampleself.conv1 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(1, 1), strides=1, padding='same')self.bn1 = tf.keras.layers.BatchNormalization()self.conv2 = tf.keras.layers.Conv2D(filters=filter_num, kernel_size=(3, 3), strides=stride, padding='same')self.bn2 = tf.keras.layers.BatchNormalization()self.conv3 = tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=1, padding='same')self.bn3 = tf.keras.layers.BatchNormalization()self.downsample = tf.keras.Sequential()self.downsample.add(tf.keras.layers.Conv2D(filters=filter_num * 4, kernel_size=(1, 1), strides=stride))self.downsample.add(tf.keras.layers.BatchNormalization())def call(self, inputs, training=None):identity = self.downsample(inputs)conv1 = self.conv1(inputs)bn1 = self.bn1(conv1, training=training)relu1 = tf.nn.relu(bn1)conv2 = self.conv2(relu1)bn2 = self.bn2(conv2, training=training)relu2 = tf.nn.relu(bn2)conv3 = self.conv3(relu2)bn3 = self.bn3(conv3, training=training)if self.with_downsample == True:output = tf.nn.relu(tf.keras.layers.add([identity, bn3]))else:output = tf.nn.relu(tf.keras.layers.add([inputs, bn3]))return output

BottleNeck类解析:

  1. 继承tf.keras.layers.Layer
  2. 构造函数,传入 特征图个数、步长、是否下采样等参数
  3. 初始化
  4. 是否进行下采样参数
  5. 定义一个1x1,步长为1的二维卷积conv1
  6. conv1 对应的批归一化
  7. 定义一个3x3,步长为1的二维卷积conv2
  8. conv2 对应的批归一化
  9. 定义一个3x3,步长为1的二维卷积conv2
  10. conv3 对应的批归一化
  11. 定义一个下采样层(self.downsample),这个层是一个包含卷积层和批量归一化的 Sequential 模型,用于匹配输入和残差的维度
  12. call()函数为前向传播
  13. 应用下采样
  14. 应用三层卷积和批量归一化以及对应的ReLU
  15. with_downsample == True:
  16. 启用下采样,将下采样后的输入(identity)与最后一个卷积层的输出(bn3)相加
  17. 没有启用下采样,将原始输入(inputs)与最后一个卷积层的输出(bn3)相加
def build_res_block_2(filter_num, blocks, stride=1):res_block = tf.keras.Sequential()res_block.add(BottleNeck(filter_num, stride=stride))for _ in range(1, blocks):res_block.add(BottleNeck(filter_num, stride=1,with_downsample=False))    return res_block

build_res_block_2函数解析:

  1. 这个函数构建了一个包含多个BottleNeck层的残差块
  2. filter_num 是每个瓶颈层内卷积层的过滤器数量
  3. blocks 是要添加到顺序模型中的瓶颈层的数量
  4. stride 是卷积的步长,默认为 1
  5. 该函数初始化一个 Sequential 模型,并添加一个 BottleNeck 层作为第一层
  6. 然后,它迭代地添加额外的 BottleNeck 层,每个层的 stride=1 且
    with_downsample=False(除第一个之外)
  7. 此函数返回组装好的顺序模型,代表一个残差块

Resnet实战1
Resnet实战2
Resnet实战3

http://www.tj-hxxt.cn/news/16042.html

相关文章:

  • wordpress 读书主题站长工具seo综合查询分析
  • 自己做的网站能上传吗公司网站建设哪家公司好
  • 自己电脑做采集网站亚马逊关键词排名提升
  • 洛阳营销型网站建设seo产品优化推广
  • django做的网站最吸引人的营销广告文案
  • 常用的网站推广方法有哪些安卓优化
  • 大连网站建设设计百度关键词排名怎么查
  • 哪些网站可以做装修想开广告公司怎么起步
  • 购物网站后台模板网站制作教程视频
  • 做营销网站建设价格南昌seo优化
  • 西宁做网站君博领衔浏览器打开是2345网址导航
  • 重庆建站模板厂家职业技能培训网站
  • 百度网页翻译功能在哪seo宣传
  • 电子商务网站建设实训步骤军事新闻今日最新消息
  • 大学生对校园网站建设的需求是什么深圳网络营销推广中心
  • 自己搭建小型服务器企业网站优化方案
  • 企业网站设计软件关键词挖掘爱站网
  • 创建自己的网站需要准备什么网上推广产品哪个网好
  • 用jsp加点mvc做网站怎么样市场营销计划方案
  • 网站服务器网址腾讯与中国联通
  • 网站排名优化原理写文章一篇30元兼职
  • 做门户网站的公司seo外包收费
  • 不买域名怎么做网站网络推广工作内容
  • 个人网站想添加支付功能怎么做百度关键词搜索量排名
  • 做面包网站微信营销平台
  • 湖南建设局网站站长工具传媒
  • 陕西企业电脑网站制作怎么做网站主页
  • 企业网站phpcms百度百科官网入口
  • 小程序定制开发seo查询排名软件
  • 网站网页怎么做万网创始人