当前位置: 首页 > news >正文

python网站开发书籍推荐购物链接

python网站开发书籍推荐,购物链接,代做土木毕业设计网站,手机网站快速建设KuiperCourse 介绍 此GitHub项目是一个初学者的深度学习框架,使用C编写,旨在为用户提供一种简单、易于理解的深度学习实现方式。以下是本项目的主要特点和功能: 计算图:使用计算图来描述深度学习模型的计算过程,利用计…

KuiperCourse

KuiperInfer-logo

介绍

此GitHub项目是一个初学者的深度学习框架,使用C++编写,旨在为用户提供一种简单、易于理解的深度学习实现方式。以下是本项目的主要特点和功能:

  • 计算图:使用计算图来描述深度学习模型的计算过程,利用计算图将神经网络的计算过程视为一个有向无环图。通过构建计算图,可以将深度学习模型转化为一系列的计算节点,通过节点之间的连接来表达模型的计算逻辑,使得计算过程可视化并易于维护和优化。

  • 张量:使用Tensor类封装张量,支持float类型数据,并提供了访问张量属性和元素的接口以及一些查询、修改张量属性的函数。在计算图中,使用张量来表示各个操作的输入和输出,将神经网络中的所有数据表示为张量,以支持并行计算。

  • 前向传播:实现了基础的前向传播。可以自定义神经网络结构,如添加层、激活函数等。

  • 易于扩展:模块化设计使得用户可以轻松地添加新的模块或算法,以适应不同的任务需求。

通过学习和使用这个项目,用户可以深入了解计算图、张量、前向传播,使用C++构建简单的深度学习框架。
同时,本项目也为用户提供了一个基础框架,以便他们可以更全面地研究、开发和部署深度学习算法。

开发环境

  • 系统:ubuntu 22.04
  • 开发语言:C++ 17
  • 数学库:Armadillo + OpenBlas
  • 加速库:OpenMP
  • 单元测试:Google Test
  • 性能测试:Google Benchmark
  • 其他:opencv + glog

搭建环境

使用Linux对应发行版的包管理器安装必要的组件

  • Fedora & Red Hat: cmake, openblas-devel, lapack-devel, arpack-devel, SuperLU-devel
  • Ubuntu & Debian: cmake, libopenblas-dev, liblapack-dev, libarpack2-dev, libsuperlu-dev

Ubuntu:

sudo apt update
sudo apt install cmake libopenblas-dev liblapack-dev libarpack2-dev libsuperlu-dev

armadillo-11.4.2(背后调用OpenBlas)的编译安装

  • 源码下载地址:https://arma.sourceforge.net/docs.html
  • 安装:
mkdir build
cd build
cmake ..
make -j8
sudo make install

Glog日志库和GTest测试库的编译安装

源码下载地址:

  • https://github.com/google/googletest
  • https://github.com/google/glog

先安装glog,再安装gtest,两者之间有依赖关系。

git clone https://github.com/google/glog.git
cd glog
mkdir build
cd build
cmake ..
make -j8
sudo make install
git clone https://github.com/google/googletest.git
cd googletest
mkdir build
cd build
cmake ..
make -j8
sudo make install

Google Benchmark的编译安装

git clone https://github.com/google/benchmark.git
git clone https://github.com/google/googletest.git benchmark/googletest
cd benchmark
mkdir build && cd build
cmake ..
make -j2
sudo make install

opencv的安装

sudo apt install libopencv-dev

本项目的编译

本项目是对b站上的课程KuiperCourse第14次课程代码的解读,详细分析请看tutorials文件夹下的文件。

git clone https://github.com/zjhellofss/KuiperCourse.git
cd KuiperCourse
git checkout thirteen
mkdir build && cd build
cmake ..
make -j2

也可以使用Clion进行编译。

未来工作

  1. 移植并实现任意一个深度学习模型,需要附加 demo 程序供演示。模型需要的 PNNX 文件获取方法,请自行参考 PNNX 项目
  2. 优化任意一个或多个算子,使得运行速度在本机上加快 5%以上。时间测评以 Google Benchmark 框架为准,该框架使用方法请自行查阅。
  3. 预研 Kuiperinfer 上的量化方法,并根据实际情况完成一个(含)以上算子的 int8 量化实现,推荐阅读资料 https://github.com/BUG1989/caffe-int8-convert-tools
  4. 支持 Kuiperinfer 的Python API,推荐使用 Pybind 实现。
  5. 优化 Kuiperinfer 的运行时需要的内存空间,使得总体资源消耗减少 5% 以上。推荐从算子输出空间复用着手(不同算子执行时空不同,它们的输出空间理论上可以复用)。
  6. 预研 Kuiperinfer 上的算子并行方法(并行算子调度),并根据个人实际情况写出它的对应实现。

与作者进行交流:将整个项目的代码、实验报告、预研文档(如果有的话)打包发送到邮箱 hellofss@foxmail.com。

代码

原作者的代码:

  • 架视频课程:https://space.bilibili.com/1822828582
  • 推理框架代码:https://github.com/zjhellofss/KuiperInfer
  • 课程代码:https://github.com/zjhellofss/KuiperCourse/

我在课程代码的基础上添加了教程:

  • https://gitcode.net/qq_50258800/kuiperinfer
  • https://github.com/kiloGrand/kuiperinfer
http://www.tj-hxxt.cn/news/14640.html

相关文章:

  • 模板网站好优化吗重庆seo网站排名
  • 建设银行企业官方网站2022年最新十条新闻
  • 中港海通网站是谁做的最新一周新闻
  • 专业做域名的网站厦门零基础学seo
  • 做网站ui去哪儿接私活网络推广怎么做效果好
  • iis应用程序池与网站中文域名查询官网
  • 帮别人做网站的公司是外包吗网站的友情链接是什么意思
  • 网站网站制作服务凡科建站登录入口
  • 做设计的兼职网站怎么营销自己的产品
  • wordpress菜单移到右边常州网络推广seo
  • 国外b2b网站设计电商网站有哪些
  • 动易网站cms百度sem竞价推广
  • 上海网站 备案品牌运营管理有限公司
  • 合肥网站制作上海网站优化公司
  • 网站开发都用什么数据库广州专业网络推广公司
  • 临朐县网站建设网站快速排名案例
  • 做网站 页面自适应seo引流什么意思
  • 长安高端装备网站设计公司爱站网站长seo综合查询工具
  • 中国房地产排名100强北京seo优化厂家
  • 个人智慧团建网站站长推荐入口自动跳转
  • 淄博网站制作网页优化兰州seo外包公司
  • 如何推广网站平台浙江seo技术培训
  • 营销的概念是什么seo基础培训教程
  • 如何自己学建设网站优化手机性能的软件
  • 网站建设价格差别为什么这么大关键词林俊杰的寓意
  • 兰州网站建设博客网络优化公司
  • 新手做亚马逊要逛哪些网站西安seo优化培训机构
  • 1G免费网站空间百度推广开户费用
  • 网站栏目怎么做301定向石家庄网站关键词推广
  • 广告制作加工厂天津seo