当前位置: 首页 > news >正文

免费网站在线客服国内十大4a广告公司

免费网站在线客服,国内十大4a广告公司,虚拟房间设计app,如何做一份营销策划方案❓ 剑指 Offer 60. n个骰子的点数 难度:中等 把 n 个骰子扔在地上,所有骰子朝上一面的点数之和为 s 。输入 n,打印出s的所有可能的值出现的概率。 你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点…

❓ 剑指 Offer 60. n个骰子的点数

难度:中等

n 个骰子扔在地上,所有骰子朝上一面的点数之和为 s 。输入 n,打印出s的所有可能的值出现的概率。

你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

示例 1:

输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]

示例 2:

输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

限制

  • 1 <= n <= 11

💡思路:动态规划

使用一个二维数组 dp 存储点数出现的次数,其中 dp[i][j] 表示前 i 个骰子产生点数 j 的次数。

只看第 n 枚骰子,它的点数可能为 1, 2, 3, ... , 6 ,因此投掷完 n 枚骰子后点数 j 出现的次数,可以由投掷完 n−1 枚骰子后,对应点数 j−1, j−2, j−3, ..., j−6 出现的次数之和转化过来。

for (第n枚骰子的点数 k = 1; k <= 6; k++) {dp[n][j] += dp[n-1][j - k]
}

写成数学公式是这样的:
d p [ n ] [ j ] = ∑ i = 1 6 d p [ n − 1 ] [ j − k ] dp[n][j]=\sum_{i=1}^6dp[n-1][j-k] dp[n][j]=i=16dp[n1][jk]
n 表示阶段,j 表示投掷完 n 枚骰子后的点数和,k 表示第 n 枚骰子会出现的六个点数。

⭐️ 空间优化: 旋转数组

观察发现每个阶段的状态都只和它前一阶段的状态有关,因此我们不需要用额外的一维来保存所有阶段。

  • 用两个一维数组交替变换存储。

🍁代码:(C++、Java)

C++

class Solution {
public:vector<double> dicesProbability(int n) {int maxsum = n * 6;vector<vector<long long>> dp(n + 1, vector<long long>(maxsum + 1));for(int i = 1; i <= 6; i++){dp[1][i] = 1;}for(int i = 2; i <= n; i++){for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k <= j; k++){dp[i][j] += dp[i - 1][j - k];}}}long long totalnum = pow(6, n);vector<double> ans(n * 5 + 1);for(int i = n; i <= maxsum; i++){ans[i - n] = (double)dp[n][i] / totalnum;}return ans;}
};

⭐️ 空间优化: 旋转数组

C++

class Solution {
public:vector<double> dicesProbability(int n) {int maxsum = n * 6;vector<vector<long long>> dp(2, vector<long long>(maxsum + 1));for(int i = 1; i <= 6; i++){dp[0][i] = 1;}int flag = 1; //旋转标记for(int i = 2; i <= n; i++, flag = 1 - flag){for(int j = 0; j <= i * 6; j++){dp[flag][j] = 0; //旋转数组清零}for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k < j; k++){dp[flag][j] += dp[1 - flag][j - k];}}}long long totalnum = pow(6, n);vector<double> ans(n * 5 + 1);for(int i = n; i <= maxsum; i++){ans[i - n] = (double)dp[1 - flag][i] / totalnum;}return ans;}
};

Java

class Solution {public double[] dicesProbability(int n) {int maxsum = n * 6;long[][] dp = new long[2][maxsum + 1];for(int i = 1; i <= 6; i++){dp[0][i] = 1;}int flag = 1; //旋转标记for(int i = 2; i <= n; i++, flag = 1 - flag){for(int j = 0; j <= i * 6; j++){dp[flag][j] = 0; //旋转数组清零}for(int j = i; j <= i * 6; j++){for(int k = 1; k <= 6 && k < j; k++){dp[flag][j] += dp[1 - flag][j - k];}}}double totalnum = Math.pow(6, n);double[] ans = new double[n * 5 + 1];for(int i = n; i <= maxsum; i++){ans[i - n] = dp[1 - flag][i] / totalnum;}return ans;}
}

🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

  • 时间复杂度 O ( n 2 ) O(n^2) O(n2), 状态转移循环 n−1 轮;每轮中,当 i =2, 3, ..., n时,对应循环数量分别为 6×6, 11×6, ... , [5(n−1)+1]×6 ;因此总体复杂度为 O ( ( n − 1 ) × 6 + [ 5 ( n − 1 ) + 1 ] 2 × 6 ) O((n−1)×\frac{6+[5(n-1)+1]}2×6) O((n1)×26+[5(n1)+1]×6),即等价于 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度 O ( n ) O(n) O(n)dp 数组需要 2*n*6的空间,所以 O ( 2 ∗ n ∗ 6 ) = O ( n ) O(2*n*6) = O(n) O(2n6)=O(n)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!

http://www.tj-hxxt.cn/news/14443.html

相关文章:

  • 推进门户网站建设推广方案万能模板
  • 自己如何制作动漫短视频网络seo优化公司
  • 做文化建设的网站百度的总部在哪里
  • 天津企业模板建站最基本的网站设计
  • 网站制作 招聘试分析网站推广和优化的原因
  • 国内免费可商用图片素材网站友情链接的方式如何选择
  • 长寿网站制作电子商务说白了就是干什么的
  • 如何备份wordpress数据库结构win10优化软件
  • 北京响应式网站建设推荐网络销售平台有哪些
  • 网站系统下载我为什么不建议年轻人做运营
  • 没有空间可以做网站吗定制建站网站建设
  • 做推广哪家网站好百度app安装下载
  • 相亲网站如何做自我介绍百度查询最火的关键词
  • 连云港市网站建设搜一下百度
  • php 同学录在线网站开发百度搜索引擎优化的方法
  • 深圳宝安网站建设营销推广活动策划方案大全
  • 室内设计软件自己设计东莞网站优化
  • 做海报图片的网站现场直播的视频
  • 滨州wordpress建站seo优化快速排名技术
  • 自己如何做外贸公司网站阿里云万网域名查询
  • 青海做网站最好的公司店铺推广
  • bluehost配置wordpressseo网站排名优化价格
  • 浙江临海市建设局网站如何创建网站教程
  • 2022年新闻热点事件账号seo是什么
  • 如何做网站解析百度推广业务员
  • 做网站自己买域名山东百搜科技有限公司
  • 大规模网站开发语言百度seo收录
  • 我是做网站的网上怎么找客户资源
  • 织梦模板首页修改东莞网络优化哪家好
  • 合肥制作企业网站广告外链购买交易平台