当前位置: 首页 > news >正文

网站上登录系统制作建站公司网站源码

网站上登录系统制作,建站公司网站源码,物流网站建设案例,广州建设工程交易中心 吴林爽给定一个二叉树的根节点root,返回它的中序遍历。 方法一:递归 二叉树的中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过…

给定一个二叉树的根节点root,返回它的中序遍历。


方法一:递归

二叉树的中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质

运行过程
  1. 从根节点 1 开始:

    • 递归遍历左子树:1 的左子树为空,直接返回。

    • 将 1 的值添加到结果列表 res 中:res = [1]

    • 递归遍历右子树:1 的右子树是 2

  2. 进入节点 2

    • 递归遍历左子树:2 的左子树是 3

    • 进入节点 3

      • 递归遍历左子树:3 的左子树为空,直接返回。

      • 将 3 的值添加到结果列表 res 中:res = [1, 3]

      • 递归遍历右子树:3 的右子树为空,直接返回。

    • 将 2 的值添加到结果列表 res 中:res = [1, 3, 2]

    • 递归遍历右子树:2 的右子树为空,直接返回。

  3. 遍历结束,返回结果 res = [1, 3, 2]

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def inorderTraversal(self, root):""":type root: Optional[TreeNode]:rtype: List[int]"""res=[] #存储遍历结果self.inorder(root,res) #中序遍历return resdef inorder(self,root,res): #递归函数,用于实现中序遍历if not root:  #如果当前节点 root 为空,直接返回return self.inorder(root.left,res)res.append(root.val)  #将当前节点的值 root.val 添加到结果列表 res 中self.inorder(root.right,res)

时间复杂度:O(n)n为二叉树节点的个数

空间复杂度:O(n)


方法二:迭代

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def inorderTraversal(self, root):""":type root: Optional[TreeNode]:rtype: List[int]"""res=[]  #空列表用于存储遍历结果stack=[]  #空列表用作栈来辅助遍历while root or stack: #当 root 不为空或栈 stk 不为空时,继续循环while root: #当root不为空时,将root推入栈stk中stack.append(root) #将 root 移动到其左子节点root=root.left  #将当前节点的所有左子节点推入栈中,直到到达最左侧的节点root=stack.pop()  #从栈 stk 中弹出栈顶节点,赋值给 root,当前子树的最左侧节点res.append(root.val) #将当前节点 root 的值 root.val 添加到结果列表 res 中root=root.right  #将 root 移动到其右子节点return res

时间复杂度:O(n)

空间复杂度:O(n)


方法三:Morris中序遍历

Morris 遍历算法是另一种遍历二叉树的方法,它能将非递归的中序遍历空间复杂度降为O(1)。

Morris 遍历算法整体步骤如下(假设当前遍历到的节点为x):

1.如果x无左孩子,先将x的值加入答案数组,再访问x的右孩子,即x=x.right

2.如果x有左孩子,则找到x左子树上最右的节点(即左子树中序遍历的最后一个节点x,x在中序遍历中的前驱节点),记为predecessor。根据predecessor的右孩子是否为空,进行如下操作:

如果predecessor的右孩子为空,则将其右孩子指向x,然后访问x的左孩子,即x=x.left。

如果predecessor的右孩子不为空,则此时其右孩子指向x,说明已经遍历完x的左子树,将predecessor的右孩子置空,将x的值加入答案数组,然后访问x的右孩子,即x=x.right。

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution(object):def inorderTraversal(self, root):""":type root: Optional[TreeNode]:rtype: List[int]"""res=[]  #列表,用来存储最终的中序遍历结果predcessor=None #当前节点的前驱节点(即,当前节点的左子树中最右边的节点)while root:  #只要当前节点不为空,就继续遍历if root.left:predcessor=root.left  #predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止while predcessor.right and predcessor.right != root:predcessor=predcessor.rightif predcessor.right is None: #predecessor 的右指针指向 root,继续遍历左子树predcessor.right=root #前驱节点的右子树为空,把它的右子树指向当前节点 rootroot=root.left #移动到它的左子树,继续遍历else:#前驱节点的右子树指向了当前节点,说明左子树遍历完成,可以访问当前节点res.append(root.val)predcessor.right=None root=root.rightelse:#当前节点没有左子树,直接访问当前节点,并将 root 移动到右子树res.append(root.val)root=root.rightreturn res

时间复杂度:O(n)

空间复杂度:O(1)

http://www.tj-hxxt.cn/news/13998.html

相关文章:

  • wordpress女性代码下载滕州网站建设优化
  • 鄂州网站设计公司中国国家人事人才培训网证书查询
  • 子网站用织梦系统seo学校培训班
  • 东莞网站开发哪家好综合权重查询
  • 合肥网站建设创优100个商业经典案例
  • 全运会网站的建设百度网盘官网登陆入口
  • 集团网站设计公司百度推广账户优化方案
  • 学习网站开发多少钱杭州seo网站哪家好
  • java网站开发源码怎么做网站主页
  • wordpress快讯模块廊坊seo推广公司
  • .php是什么网站seo要点
  • 南阳公司网站建设营销网站建设大概费用
  • 成都做营销型网站推广安年软文网
  • 东城区住房和城市建设委员会网站免费软文发布平台有哪些
  • 人才网站建设2023b站免费推广入口游戏
  • 做网站建设的平台淘宝推广工具
  • 维度 网站建设logo设计
  • 大连手机自适应网站建设维护公司注册流程
  • 2019做哪个网站赚钱网上推广平台
  • 网络营销推广步骤seo排名优化培训怎样
  • 国外做网站侵权学seo网络推广
  • 网站外链接自己可以怎么做百度seo怎么操作
  • 做网站主要学什么条件媒体软文推广平台
  • wordpress判断是否开启用户注册上海搜索排名优化公司
  • 深圳人才网官方网站正规百度推广
  • 黄石市下陆区建设管理局网站百度关键词推广
  • 淄博网站制作定制百度seo培训班
  • 沧州北京网站建设seo是什么?
  • 网站建设的原则有哪些方面广州网站运营
  • 营销型网站制作方案重庆网站设计