当前位置: 首页 > news >正文

怎么样可以做自己的网站个人网站开发软件

怎么样可以做自己的网站,个人网站开发软件,动漫技术制作专业,网站推广营销策划Hyper-SD: diffusion实时出图#xff0c;一步搞定#xff0c;字节出品 先看效果 Real-Time Generation Demo of Hyper-SD. Abstract 近来#xff0c;一系列面向扩散模型#xff08;Diffusion Models#xff0c;DM#xff09;的迭代紧凑式传播推断算法陆续出现#xf…Hyper-SD: diffusion实时出图一步搞定字节出品 先看效果 Real-Time Generation Demo of Hyper-SD. Abstract 近来一系列面向扩散模型Diffusion ModelsDM的迭代紧凑式传播推断算法陆续出现以解决其中的复杂性问题。目前这些算法常常将方法分为两类一是保持 ODE 流形连续性二是重写 ODE 流形。然而这两种方法在压缩后的执行效果中存在显著问题。因此我们提出了 Hyper-SD 框架通过有机结合以上两类算法的优点并将其应用于压缩后模型的学习从而实现高质量执行。此外我们引入了人工反馈学习以提高在低步长情况下的表现和改进该过程中可能发生的损失。同时还使用了分数学习来进一步改善模型在低步长情况下的输出效果。最后我们采用统一 LoRA 框架将其应用于所有执行过程中的所有步骤。实际上在不同步长下测试时Hyper-SDXL 模型都超越了 SDXL-Lightning并且其在 CLIP Score 和 Aes Score 方面分别提高了 0.68 以及 0.51。 Pipeline 超声速降维算法以两阶段进行连续性极化过程首先在时间段[0,T/2]和[T/2T]上分别对其进行二阶段连续性极化过程得到两个连续性方程之后将这些连续性方程作为训练全局连续性模型的输入 Experiment 对于基于LoRA的Hyper-SD和其他SDXL架构优化方法进行量化比较。 对于 Hyper-SD和其他基于LoRA的加速器架构包括SD15架构进行了性能比较。 Hyper-SD 比现有优先考虑加速器的方法拥有显著的优势并在 SD1.5 和 SDXL 架构上得到了更多用户的青睐。 不同尺度的超透明LoRa在应用于不同基础模型时可以产生高质量图像其步长也是相应变化的。 超宽频LoRA通信模式在超高速数字化(Hyper-SD)中的统一应用与控制网络相容。例子是基于批荡或画笔图像进行的条件性分叉。 权重文件 Hyper-SDXL-Nstep-lora.safetensors: Lora checkpoint, for SDXL-related models. Hyper-SD15-Nstep-lora.safetensors: Lora checkpoint, for SD1.5-related models. Hyper-SDXL-1step-unet.safetensors: Unet checkpoint distilled from SDXL-Base. 文生图模式 SDXL-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 2-steps LoRA, 可自行设置其他LoRA. import torch from diffusers import DiffusionPipeline, DDIMScheduler from huggingface_hub import hf_hub_download base_model_id stabilityai/stable-diffusion-xl-base-1.0 repo_name ByteDance/Hyper-SD # Take 2-steps lora as an example ckpt_name Hyper-SDXL-2steps-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) # lower eta results in more detail prompta photo of a cat imagepipe(promptprompt, num_inference_steps2, guidance_scale0).images[0]Unified LoRA (support 1 to 8 steps inference) 可以灵活调整推理步数 以及 eta value 达到最佳效果. import torch from diffusers import DiffusionPipeline, TCDScheduler from huggingface_hub import hf_hub_download base_model_id stabilityai/stable-diffusion-xl-base-1.0 repo_name ByteDance/Hyper-SD ckpt_name Hyper-SDXL-1step-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 prompta photo of a cat imagepipe(promptprompt, num_inference_steps1, guidance_scale0, etaeta).images[0]1-step SDXL Unet 单步推理. import torch from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler from huggingface_hub import hf_hub_download from safetensors.torch import load_file base_model_id stabilityai/stable-diffusion-xl-base-1.0 repo_name ByteDance/Hyper-SD ckpt_name Hyper-SDXL-1step-Unet.safetensors # Load model. unet UNet2DConditionModel.from_config(base_model_id, subfolderunet).to(cuda, torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name), devicecuda)) pipe DiffusionPipeline.from_pretrained(base_model_id, unetunet, torch_dtypetorch.float16, variantfp16).to(cuda) # Use LCM scheduler instead of ddim scheduler to support specific timestep number inputs pipe.scheduler LCMScheduler.from_config(pipe.scheduler.config) # Set start timesteps to 800 in the one-step inference to get better results prompta photo of a cat imagepipe(promptprompt, num_inference_steps1, guidance_scale0, timesteps[800]).images[0]SD1.5-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 2-steps LoRA import torch from diffusers import DiffusionPipeline, DDIMScheduler from huggingface_hub import hf_hub_download base_model_id runwayml/stable-diffusion-v1-5 repo_name ByteDance/Hyper-SD # Take 2-steps lora as an example ckpt_name Hyper-SD15-2steps-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) prompta photo of a cat imagepipe(promptprompt, num_inference_steps2, guidance_scale0).images[0]Unified LoRA (support 1 to 8 steps inference) 可以灵活调整推理步数 以及 eta value 达到最佳效果. import torch from diffusers import DiffusionPipeline, TCDScheduler from huggingface_hub import hf_hub_download base_model_id runwayml/stable-diffusion-v1-5 repo_name ByteDance/Hyper-SD ckpt_name Hyper-SD15-1step-lora.safetensors # Load model. pipe DiffusionPipeline.from_pretrained(base_model_id, torch_dtypetorch.float16, variantfp16).to(cuda) pipe.load_lora_weights(hf_hub_download(repo_name, ckpt_name)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 prompta photo of a cat imagepipe(promptprompt, num_inference_steps1, guidance_scale0, etaeta).images[0]ControlNet 模式 SDXL-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 Canny Controlnet 以及 2-steps 推理: import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, DDIMScheduler from huggingface_hub import hf_hub_download# Load original image image load_image(https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png) control_weight 0.5 # recommended for good generalization# Initialize pipeline controlnet ControlNetModel.from_pretrained(diffusers/controlnet-canny-sdxl-1.0,torch_dtypetorch.float16 ) vae AutoencoderKL.from_pretrained(madebyollin/sdxl-vae-fp16-fix, torch_dtypetorch.float16) pipe StableDiffusionXLControlNetPipeline.from_pretrained(stabilityai/stable-diffusion-xl-base-1.0, controlnetcontrolnet, vaevae, torch_dtypetorch.float16).to(cuda)pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SDXL-2steps-lora.safetensors)) # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) pipe.fuse_lora() image pipe(A chocolate cookie, num_inference_steps2, imagecontrol_image, guidance_scale0, controlnet_conditioning_scalecontrol_weight).images[0] image.save(image_out.png)Unified LoRA (support 1 to 8 steps inference) 使用 Canny Controlnet: import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, TCDScheduler from huggingface_hub import hf_hub_download# Load original image image load_image(https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png) control_weight 0.5 # recommended for good generalization# Initialize pipeline controlnet ControlNetModel.from_pretrained(diffusers/controlnet-canny-sdxl-1.0,torch_dtypetorch.float16 ) vae AutoencoderKL.from_pretrained(madebyollin/sdxl-vae-fp16-fix, torch_dtypetorch.float16) pipe StableDiffusionXLControlNetPipeline.from_pretrained(stabilityai/stable-diffusion-xl-base-1.0,controlnetcontrolnet, vaevae, torch_dtypetorch.float16).to(cuda)# Load Hyper-SD15-1step lora pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SDXL-1step-lora.safetensors)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 image pipe(A chocolate cookie, num_inference_steps4, imagecontrol_image, guidance_scale0, controlnet_conditioning_scalecontrol_weight, etaeta).images[0] image.save(image_out.png)SD1.5-related models 2-Steps, 4-Steps, 8-steps LoRA 使用 Canny Controlnet 以及 2-steps 推理: import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, DDIMSchedulerfrom huggingface_hub import hf_hub_downloadcontrolnet_checkpoint lllyasviel/control_v11p_sd15_canny# Load original image image load_image(https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png)# Initialize pipeline controlnet ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtypetorch.float16) pipe StableDiffusionControlNetPipeline.from_pretrained(runwayml/stable-diffusion-v1-5, controlnetcontrolnet, torch_dtypetorch.float16).to(cuda) pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SD15-2steps-lora.safetensors)) pipe.fuse_lora() # Ensure ddim scheduler timestep spacing set as trailing !!! pipe.scheduler DDIMScheduler.from_config(pipe.scheduler.config, timestep_spacingtrailing) image pipe(a blue paradise bird in the jungle, num_inference_steps2, imagecontrol_image, guidance_scale0).images[0] image.save(image_out.png)Unified LoRA (support 1 to 8 steps inference) 使用 Canny Controlnet : import torch from diffusers.utils import load_image import numpy as np import cv2 from PIL import Image from diffusers import ControlNetModel, StableDiffusionControlNetPipeline, TCDScheduler from huggingface_hub import hf_hub_downloadcontrolnet_checkpoint lllyasviel/control_v11p_sd15_canny# Load original image image load_image(https://huggingface.co/lllyasviel/control_v11p_sd15_canny/resolve/main/images/input.png) image np.array(image) # Prepare Canny Control Image low_threshold 100 high_threshold 200 image cv2.Canny(image, low_threshold, high_threshold) image image[:, :, None] image np.concatenate([image, image, image], axis2) control_image Image.fromarray(image) control_image.save(control.png)# Initialize pipeline controlnet ControlNetModel.from_pretrained(controlnet_checkpoint, torch_dtypetorch.float16) pipe StableDiffusionControlNetPipeline.from_pretrained(runwayml/stable-diffusion-v1-5, controlnetcontrolnet, torch_dtypetorch.float16).to(cuda) # Load Hyper-SD15-1step lora pipe.load_lora_weights(hf_hub_download(ByteDance/Hyper-SD, Hyper-SD15-1step-lora.safetensors)) pipe.fuse_lora() # Use TCD scheduler to achieve better image quality pipe.scheduler TCDScheduler.from_config(pipe.scheduler.config) # Lower eta results in more detail for multi-steps inference eta1.0 image pipe(a blue paradise bird in the jungle, num_inference_steps1, imagecontrol_image, guidance_scale0, etaeta).images[0] image.save(image_out.png)
http://www.tj-hxxt.cn/news/139327.html

相关文章:

  • 手机怎样设计网站建设合肥网站建设公司 招聘
  • 用phpcms v9搭建手机网站后您没有访问该信息的权限!芍药居做网站公司
  • 建行门户网站dw个人网站制作教程
  • 品牌网站建设岗位职责wordpress怎么还原
  • php网站建设模板下载郴州新网交友
  • 教务系统网站开发方法河南省工程造价信息网官网
  • 可直接打开网站的网页网站建设 微信小程序
  • 厦门手机网站建设是什么百度权重概念
  • dw怎么做网站注册登入页面贵州城乡住房建设网站
  • 怎样网站建设与管理广水做网站
  • 免费商城网站模板360免费wifi怎么连接
  • php做网站验证码的设计建立网站的目录结构应注意哪些问题
  • 专业做家政网站微信开店小程序怎么弄
  • 佛山知名营销网站开发网站建设手机端pc端分开
  • 大连网站空间网站建设的基础知识
  • 长沙网站建设zh68写微信小程序需要什么软件
  • 怎么建网站 手机版建设网站的企业公司
  • 云南网站设计公司江苏网站建设yijuce
  • 做购物网站骗人做图片网站 解决版权
  • 购物网站排行中国移动和办公app下载
  • 衍艺网站建设设计企业网站主页图片
  • .net网站开发视频动易网站免费版
  • 关于动漫网站建设规划表平台推广是做什么
  • 用vs2010做网站网站媒体给房开做内容推广
  • 无锡门户网站制作服务莱芜网站建设流程
  • 牡丹江网站推广模拟登录 wordpress
  • 网站建设系统分析深圳市福田区656号
  • 购物网站建设需求模板下载如何建立自己的超市网站
  • 做视频免费模板下载网站专业网页设计哪家好
  • 手机网页设计制作网站wordpress 兔