当前位置: 首页 > news >正文

怎样做好网站用户体验动效做的好的网站

怎样做好网站用户体验,动效做的好的网站,网站建设销售工资,新开传奇网站大全前提条件 根据不同的操作系统#xff0c;安装好显卡驱动#xff0c;并能正常识别出来显卡#xff0c;比如如下截图#xff1a; GPU容器创建流程 containerd -- containerd-shim-- nvidia-container-runtime -- nvidia-container-runtime-hook -- libnvid…前提条件 根据不同的操作系统安装好显卡驱动并能正常识别出来显卡比如如下截图 GPU容器创建流程 containerd -- containerd-shim-- nvidia-container-runtime -- nvidia-container-runtime-hook -- libnvidia-container -- runc -- container-process GPU驱动安装 # ubuntu系统apt-get update apt-get install gcc make ## cuda10.1 wget -c https://ops-software-binary-1255440668.cos.ap-chengdu.myqcloud.com/nvidia/NVIDIA-Linux-x86_64-430.50.run bash NVIDIA-Linux-x86_64-430.50.run ## cuda10.2 wget -c https://ops-software-binary-1255440668.cos.ap-chengdu.myqcloud.com/nvidia/NVIDIA-Linux-x86_64-440.100.run bash NVIDIA-Linux-x86_64-440.100.run ## cuda11 wget -c https://ops-software-binary-1255440668.cos.ap-chengdu.myqcloud.com/nvidia/NVIDIA-Linux-x86_64-450.66.run bash NVIDIA-Linux-x86_64-450.66.run ## cuda11.4 wget -c https://ops-software-binary-1255440668.cos.ap-chengdu.myqcloud.com/nvidia/NVIDIA-Linux-x86_64-470.57.02.run bash NVIDIA-Linux-x86_64-470.57.02.run 安装nvidia runtime https://nvidia.github.io/nvidia-container-runtime/# ubuntu在线安装curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - cat /etc/apt/sources.list.d/nvidia-docker.list EOF deb https://nvidia.github.io/libnvidia-container/ubuntu16.04/$(ARCH) / deb https://nvidia.github.io/nvidia-container-runtime/ubuntu16.04/$(ARCH) / deb https://nvidia.github.io/nvidia-docker/ubuntu16.04/$(ARCH) / EOF apt-get update apt-get install nvidia-container-runtime# centos 在线安装distribution$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo DIST$(sed -n s/releasever//p /etc/yum.conf) DIST${DIST:-$(. /etc/os-release; echo $VERSION_ID)} sudo rpm -e gpg-pubkey-f796ecb0 sudo gpg --homedir /var/lib/yum/repos/$(uname -m)/$DIST/nvidia-docker/gpgdir --delete-key f796ecb0 sudo yum makecache yum -y install nvidia-container-runtime 配置docker/containerd # docker配置cat /etc/docker/daemon.json{registry-mirrors: [https://wlzfs4t4.mirror.aliyuncs.com],max-concurrent-downloads: 10,log-driver: json-file,log-level: warn,log-opts: {max-size: 10m,max-file: 3},data-root: /data/var/lib/docker,bip: 169.254.31.1/24,default-runtime: nvidia,runtimes: {nvidia: {path: /usr/bin/nvidia-container-runtime,runtimeArgs: []}} }systemctl restart docker# containerd配置cat /etc/containerd/config.toml#其他的根据自己的需求修改我这里只说明适配gpu的配置 [plugins][plugins.io.containerd.grpc.v1.cri][plugins.io.containerd.grpc.v1.cri.containerd] #-------------------修改开始-------------------------------------------default_runtime_name nvidia #-------------------修改结束-------------------------------------------[plugins.io.containerd.grpc.v1.cri.containerd.runtimes] #-------------------新增开始-------------------------------------------[plugins.io.containerd.grpc.v1.cri.containerd.runtimes.nvidia] privileged_without_host_devices falseruntime_engine runtime_root runtime_type io.containerd.runc.v2[plugins.io.containerd.grpc.v1.cri.containerd.runtimes.nvidia.options]BinaryName /usr/bin/nvidia-container-runtime #-------------------新增结束-------------------------------------------systemctl restart containerd.service 方案一使用nvidia官方插件 【根据显卡数量分配独占显卡】 应用yaml分配GPU资源示例 resources:limits:nvidia.com/gpu: 1requests:nvidia.com/gpu: 1 其中1表示使用1张GPU卡 在Kubernetes中启用GPU支持 # cat nvidia-device-plugin.yaml apiVersion: apps/v1 kind: DaemonSet metadata:name: nvidia-device-plugin-daemonsetnamespace: kube-system spec:selector:matchLabels:name: nvidia-device-plugin-dsupdateStrategy:type: RollingUpdatetemplate:metadata:labels:name: nvidia-device-plugin-dsspec:tolerations:- key: nvidia.com/gpuoperator: Existseffect: NoSchedule# Mark this pod as a critical add-on; when enabled, the critical add-on# scheduler reserves resources for critical add-on pods so that they can# be rescheduled after a failure.# See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/priorityClassName: system-node-criticalcontainers:- image: ycloudhub.com/middleware/nvidia-gpu-device-plugin:v0.12.3name: nvidia-device-plugin-ctrenv:- name: FAIL_ON_INIT_ERRORvalue: falsesecurityContext:allowPrivilegeEscalation: falsecapabilities:drop: [ALL]volumeMounts:- name: device-pluginmountPath: /var/lib/kubelet/device-pluginsvolumes:- name: device-pluginhostPath:path: /var/lib/kubelet/device-plugins# 应用yaml文件并检查kubectl apply -f nvidia-device-plugin.yml kubectl get po -n kube-system | grep nvidiakubectl describe nodes ycloud ...... Capacity:cpu: 32ephemeral-storage: 458291312Kihugepages-1Gi: 0hugepages-2Mi: 0memory: 131661096Kinvidia.com/gpu: 2pods: 110 Allocatable:cpu: 32ephemeral-storage: 422361272440hugepages-1Gi: 0hugepages-2Mi: 0memory: 131558696Kinvidia.com/gpu: 2pods: 110 ...... 方案二使用第三方插件 【根据显卡显存大小分配共享显卡】 # 阿里云官方git地址https://github.com/AliyunContainerService/gpushare-device-plugin/resources:limits:aliyun.com/gpu-mem: 3requests:aliyun.com/gpu-mem: 3# 其中3表示使用的显存大小,单位G 安装gpushare-scheduler-extender插件 参考文档 https://github.com/AliyunContainerService/gpushare-scheduler-extender/blob/master/docs/install.md 1.修改kube-scheduler配置 # 创建/etc/kubernetes/scheduler-policy-config.json{kind: Policy,apiVersion: v1,extenders: [{urlPrefix: http://127.0.0.1:32766/gpushare-scheduler,filterVerb: filter,bindVerb: bind,enableHttps: false,nodeCacheCapable: true,managedResources: [{name: aliyun.com/gpu-mem,ignoredByScheduler: false}],ignorable: false}] }# 修改cat /etc/systemd/system/kube-scheduler.service文件添加--policy-config-file相关内容cat /etc/systemd/system/kube-scheduler.service[Unit] DescriptionKubernetes Scheduler Documentationhttps://github.com/GoogleCloudPlatform/kubernetes [Service] ExecStart/usr/local/bin/kube-scheduler \--address127.0.0.1 \--masterhttp://127.0.0.1:8080 \--leader-electtrue \--v2 \--policy-config-file/etc/kubernetes/scheduler-policy-config.json Restarton-failure RestartSec5 [Install] WantedBymulti-user.target# 重启服务systemctl daemon-reload systemctl restart kube-scheduler.service 2. 部署gpushare-schd-extender curl -O https://raw.githubusercontent.com/AliyunContainerService/gpushare-scheduler-extender/master/config/gpushare-schd-extender.yamlkubectl apply -f gpushare-schd-extender.yaml 3.部署device-plugin # 给节点添加label gpusharetruekubectl label node target_node gpusharetrue For example: kubectl label node mynode gpusharetrue# 部署device-plugin插件wget https://raw.githubusercontent.com/AliyunContainerService/gpushare-device-plugin/master/device-plugin-rbac.yamlkubectl apply -f device-plugin-rbac.yamlwget https://raw.githubusercontent.com/AliyunContainerService/gpushare-device-plugin/master/device-plugin-ds.yamlkubectl apply -f device-plugin-ds.yaml 4.安装kubectl-inspect-gpushare插件用来查看GPU使用情况 cd /usr/bin/wget https://github.com/AliyunContainerService/gpushare-device-plugin/releases/download/v0.3.0/kubectl-inspect-gpusharechmod ux /usr/bin/kubectl-inspect-gpushare 以上内容仅供参考。
http://www.tj-hxxt.cn/news/131574.html

相关文章:

  • wordpress子站点用户无角色北京果木烤鸭制作方法
  • 大型门户网站开发公司有app怎么做网站
  • 网站后台上传文件网站开发的交付文档
  • 菏泽做网站推广开源网站程序
  • 网站源代码安装网络工程师简历
  • 做课程的网站沙田镇网站建设公司
  • 广东省住房建设厅网站行唐县做网站电话
  • 公司想做个网站怎么办宁波广告公司
  • 南宁怎么做网站做网站用dw的多吗
  • 天津餐饮团购网站建设淘宝网官网登录首页
  • 赣州市住房和城乡建设局网站怀宁网站建设
  • 一个网站一级栏目专做餐饮的网站
  • 中山市网站建设 中企动力html静态网站开发实验
  • 建设银行网上银行网站永久免费自助建站
  • 塘沽网站制作公司怎么自学网站建设
  • 网站规划可以分成哪几步上海网站建设系统
  • 平面设计公司网站2017山亭区建设局网站
  • 米拓建站怎么样制作网线颜色顺序
  • 自己做网站卖产品怎么样广告设计公司目标顾客描述
  • 免费网站软件网站建设的流程
  • 北京怎样建网站用c 做网站设计系统的项目作业
  • 福建住房和城建设网站推广工作的流程及内容
  • 水务公司网站建设方案android studio下载官网
  • 滨州市住房和城乡建设局网站廊坊关键词优化
  • 全运会为什么建设网站风控网站开发
  • 建一个自己的网站有什么用最新外贸电商平台
  • 广州外贸网站咨询网站后台做链接
  • 东西湖网站建设公司全屋定制十大品牌
  • 西安开发网站的公司一个旅游网站建设需求
  • 兴义之窗网站怎么做什么网站可以免费做视频的软件下载