当前位置: 首页 > news >正文

做网站寄生虫建网站需要哪些资质

做网站寄生虫,建网站需要哪些资质,wordpress 主页空白,做php网站全文链接#xff1a;https://tecdat.cn/?p37019 分析师#xff1a;Haopeng Li 随着我国股票市场规模的不断扩大、制度的不断完善#xff0c;它在金融市场中也成为了越来越不可或缺的一部分。 【视频讲解】神经网络、Lasso回归、线性回归、随机森林、ARIMA股票价格时间序列…全文链接https://tecdat.cn/?p37019 分析师Haopeng Li 随着我国股票市场规模的不断扩大、制度的不断完善它在金融市场中也成为了越来越不可或缺的一部分。 【视频讲解】神经网络、Lasso回归、线性回归、随机森林、ARIMA股票价格时间序列预测 基于此选择合适的模型对股票价格进行精准、可靠的预测变得愈加重要。因为股票市场容易受到经济、政策、心理等多种相关因素的影响是一个极其复杂的非线性系统再加上每天大量投资者进行交易产生了非常庞大的交易数据需要处理、增添了股价预测的难度所以传统的统计方法由于其在适应性、学习能力以及容错能力等方面的局限性应用在股价预测问题上的结果往往差强人意。而计算机技术与机器学习算法的发展为股价预测开辟了一条新的道路取得了不俗的成果。BP神经网络就是其中较成熟、应用较广泛的模型之一。选择合适的模型输入变量与优化算法来提高模型与预测的精确度也越来越不可或缺。 数据源准备 数据来自国泰安数据库选取了中国平安601318个股从2017年2月16日到2021年2月16日的日开盘价、日最高价、日最低价、日收盘价、日成交量和日成交额的数据。 特征转换 计算了24个股价相关的技术指标例如心理线PSY 近n日内上涨总天数/n*100、布林线一共含有三条线中轨线  n日的移动平均下轨线  中轨线-m*n日收盘价的标准差上轨线 中轨线m*n日收盘价的标准差与开盘价、成交量等一共30个指标作为BP神经网络模型的输入变量并用主成分分析的方法选取了6个主成分总贡献率达到了0.87。 之后对数据进行了数据归一化并选择五天的股票相关指标作为模型的输入变量。 构造 以上说明了如何抽取相关特征我们大致有如下训练样本只列举部分特征。 主成分分析前 主成分分析并数据归一化后 划分训练集和测试集 将2017年2月16日至2020年5月12日的数据划分为训练集2020年5月12日至2021年2月16日的数据划分为测试集其中训练集部分使用5重交叉验证的方法划分验证集来探寻模型的最优参数。经反复多次试验发现网络在1000次之内便能收敛因此将网络的学习迭代次数设为1000次。为了减小偶然性、增加可信度本文在验证集与测试集上均重复5次独立试验取5次试验平均的MSE与MAE作为最终的评价结果来比较不同参数与模型的拟合效果。 建模 BP神经网络模型 BP神经网络属于有监督的多层前馈神经网络中的一种该网络的训练特点为输入工作信号的正向传播与反馈误差信号的反向传递。在正向传播的过程中输入的工作信号从输入层进入网络在经过各层的加权变换与激活函数变换后抵达输出层在这一过程中整个网络的阈值和权值是不进行更新的且每一层神经元的状态只收到上一层神经元状态的影响。在反向传递的过程中根据MSE指标计算网络实际输出与期望输出之间的误差根据该误差反向逐层修改网络的权值与阈值使得网络的实际输出不断向期望输出逼近。经过上述两个步骤的反复迭代网络的权值与阈值最终会收敛学习过程就会停止。1989年Robert Hecht-Nielsen曾证明含有一层隐层的BP神经网络就可以无线逼近任意闭区间内的任意一个连续函数因此三层BP神经网络便能够实现任意的m维到n维的映射。使用三层BP网络来预测股价。 Lasso回归 假定因变量y是多个自变量x1,…,xp(p≥2)和随机误差项ε的线性函数则多元线性回归模型可以表示为 yβ0β1x1…βpxpεXβε                    其中y为随机变量x1,…,xp(p≥2)为确定性的自变量ε~N(0,σ2)为随机的误差项β0,..., βp为回归系数。则多元线性回归模型的目标函数为                                                               minβ||y-Xβ||2 在其中加入L1范数惩罚项则得到具有变量选择特征、可以得到稀疏解的Lasso回归模型 minβ{||y-Xβ||2λ|β|1} 模型优化 特征提取数据降维参数调参。 选择Adam优化算法 隐藏节点的确定 使用公式tmnτ确定隐藏层的最优节点个数范围其中t表示隐藏层节点数m表示输入层节点数n表示输出层节点数τ表示1-10之间的常数因为输入层节点数为150输出层节点数为1因此隐藏层的节点数范围为[14,23]。令隐藏层的激活函数为sigmoid函数输出层的激活函数为Leaky Relu函数Adam算法初始的学习率设为0.01 激活函数的确定 初始学习率的确定 在此案例中使用Adam算法优化的主成分分析降维的BP神经网络模型预测效果最好在测试集上拟合的平均MSE为0.000641平均MAE为0.019441 Adam优化算法的预测效果也要比SGD优化算法的预测效果好。 Lasso模型因为自身带有变量选择作用应用在未降维的数据上的效果要比降维数据效果要好因为在主成分分析降维时会损失一部分原始信息。最终模型选择变量如下所示 模型预测结果也较好平均MSE为0.000681平均MAE为0.0202。 最终因为输入天数的确定具有主观性因此尝试改变输入天数与训练集大小来观察BP神经网络模型的稳定性。 可以看到降维后的Adam优化BP神经网络模型较稳定且模型的误差基本都随着输入天数的增加先下降再上升这是因为当输入天数增加时最开始模型获取的有效信息增加使模型训练得更加精确拟合效果更好但随着输入天数增加过多新增的股价数据是较久远缺少时效性的数据提供的干扰信息多于有效信息因此模型的误差会随后增大。 但市场股价信息只是影响股票价格的一部分因素更适用于短期股价预测在中长期股价预测中要考虑的因素还有很多例如股票的基本面因素包括宏观经济分析CPI、GDP、通货膨胀率、中观经济分析企业所处的行业相关的情况和微观经济分析企业内部运营情况三大方面的内容。 接下来我们一个实例包含代码和数据来演示如何用神经网络、Lasso回归、线性回归、随机森林进行股票价格预测。 基于神经网络、Lasso回归、线性回归、随机森林对大型科技股价格预测 数据选择 该数据集包括 14 家不同科技公司的每日股价和交易量包括苹果 AAPL、亚马逊 AMZN、Alphabet GOOGL 和 Meta Platforms META 等 数据导入 数据的时间序列可视化 unique_symbols stock[stock_symbol].unique() colors [red, blue, green, purple, grey, brown, cyan, magenta, yellow, black, orange, pink, #ADD8E6, #90EE90] color_palette {symbol: colors[i % len(colors)] for i, symbol in enumerate(unique_symbols)} 显示 2010 年至 2023 年股票调整后收盘价的时间序列的折线图。每只股票都由一条不同颜色的线表示股票代码列在右侧的图例中。这些线显示了股价随时间推移的波动一些股票显示出显着的增长 探索性数据分析 缺失值 数据集中没有缺失值。stock_symbol、date、open、high、low、close、adj_close、volume中的每一列都有等于条目总数的非空计数即 45,088。因此每列的缺失值百分比为 0.0%确认数据集是完整的没有缺失数据。 对图 配对图是一个图表网格显示每个股票变量如开盘价和收盘价与其他变量的关系。对角线上是直方图显示每个变量出现不同值的频率。对角线的散点图显示了两个变量之间的趋势或模式例如整个数据中最高价和最低价的比较情况。 numerical_data stock[[open, high, low, close, adj_close, volume]] 相关热图 热图显示了不同股票市场变量之间的密切关系例如开盘价和收盘价。深绿色方块表示非常强的关系开盘价、最高价、最低价、收盘价和调整后的收盘价都是如此它们都非常相似。成交量与这些价格的关系不大如棕色方块所示。 异常 数据集中的异常值可以在每个数值股票列的箱线图中发现例如开盘价、最高价、最低价、收盘价和调整后的收盘价以及成交量。描述性统计量显示的值远高于或低于平均值表明这些是异常值。 数据预处理 数据清理 由于没有缺失值因此我们不会执行任何插补技术如均值或中位数插补或基于模型的方法也不会删除具有缺失值的行/列。 删除异常值 stock_cleaned remove_outliers(stock, columns_to_check, z_score_threshold) 预测分析 对于我们的预测分析我们开发了一种综合方法利用四种不同的机器学习模型每种模型都因其在预测结果方面的独特优势和能力而被选中。这些模型包括 线性回归评估自变量和因变量之间线性关系的基础模型。套索回归线性回归的扩展包含 L1 正则化有助于特征选择和减少过拟合。随机森林回归一种集成学习方法它使用多个决策树通过平均结果来生成更准确、更稳健的预测。多层感知器 MLP一类前馈人工神经网络可以对输入和输出之间的复杂非线性关系进行建模。 通过利用这些模型的多种方法我们旨在提高预测分析的准确性和可靠性。 线性回归 在线性回归代码中我们使用一个模型来预测基于其他市场因素“开盘价”、“最高价”、“最低价”、“收盘价”的股价“adj_close”。该模型使用部分数据进行训练然后进行测试以查看其预测新数据的程度表明它通常准确均方误差为 92.29R 平方约为 96.8%。最后我们用图查看预测价格和实际价格之间的差异注意模型在哪些方面没有完美预测。 model LinearRegression() 第一张图显示了预测的股票价格与实际价格的比较情况大多数点位于一条线上表明预测准确性良好。第二张图显示残差即实际值和预测值之间的差值;点分散在零线周围在预测中显示一些误差。第三张图是一个直方图它告诉我们不同残差发生的频率大多数接近于零这表明许多预测接近实际值。 套索回归 在套索回归代码中我们创建了一个模型该模型不仅可以预测股票价格还可以通过减少变量的数量来简化模型如果某些变量对预测没有多大帮助这是通过“alpha”值完成的它控制着这种简化的强度。该模型的准确率略低于基本线性回归R 平方约为 96.82%。然后我们使用散点图和直方图根据实际价格和误差残差检查预测。 第一张图将实际股票价值与 Lasso 模型预测的股票价值进行了比较显示了沿线的紧密聚类表明预测良好但存在一些价差。第二张残差图显示了预测值和实际值之间的差异点集中在零线附近但对于较高的值则存在一些较大的偏差。第三张图显示了这些差异的分布主要以零为中心这表明预测通常接近实际值尽管有一些明显的例外。 随机森林回归 在随机森林模型代码中我们使用一组决策树来预测股票价格与单个决策树相比这通常会导致更准确和稳定的预测。该模型显示均方误差为 75.59R 平方误差为 97.4%表明其预测与实际值非常接近。我们使用绘图直观地将预测值与实际值进行比较并分析预测误差残差。 第一张图显示了随机森林模型的实际股价与预测股价大多数点都接近黑线表示预测准确。第二张图显示了残差即预测值和实际值之间的差异散布在水平线周围对于较高的值存在一组较大的误差。第三张图是残差直方图显示大多数预测都非常准确峰值在零附近但也有一些更大的误差离零更远。 多层感知器 MLP 在多层感知器模型代码中我们使用一种具有两层处理的神经网络来预测股票价格网络通过其层“学习”复杂的模式。该模型的均方误差约为 97R 平方得分约为 96.7%这意味着它非常擅长做出与实际数据相匹配的预测。我们使用几个图来检查预测值与实际值的比较情况并查看预测误差即残差。 第一张图显示了神经网络模型对实际和预测股票价值的比较主要是沿着这条线这意味着预测是好的。第二个图是一个残差图它显示了预测中的一些误差特别是对于较高的值因为它们偏离了零线。第三张图是一个直方图在零附近急剧达到峰值表明大多数预测接近实际值但也有一些误差离零更远。 使用 ARIMA 模型进行时间序列预测 该代码准备股票市场数据并使用 ARIMA 模型预测每只股票的未来调整后收盘价。首先它将 2023 年初之前的历史数据分开以训练模型。然后它按日期和股票代码对数据进行分组选择每个月的最大调整收盘价。对于每只股票它都会根据历史数据拟合 ARIMA 模型并使用它来预测 2023 年未来 12 个月的收盘价并在历史数据旁边用图表显示这些预测。 model ARIMA(dataf_max_pivot[symbol], order(5,1,0)) model_fit model.fit() 关于分析师 在此对Haopeng Li对本文所作的贡献表示诚挚感谢她在上海财经大学完成了控制工程专业的硕士学位专注人工智能领域。擅长Python、Matlab仿真、视觉处理、神经网络、数据分析 。
http://www.tj-hxxt.cn/news/131183.html

相关文章:

  • 昆明企业建站程序下载百度语音导航地图
  • 下载源码就能建网站吗网络加速器外网
  • 没有网站可以做备案吗软文代发布
  • 城市管理如何宣传市建设网站广告创意设计欣赏
  • iis建好的网站套用模板哔哩哔哩网站开发图片
  • 金坛市住房和城乡建设局 网站免费的百度网站怎么做
  • 做网站需要招什么条件网易云wordpress代码
  • 湖北什么是网站建设企业展厅图文设计
  • 长清做网站wordpress雪人2.0主题
  • 做网站的重点目标水网站模板
  • 网站仿站工具昆明软件开发公司推荐
  • 菏泽百度网站建设个人备案网站做淘宝客可以
  • 网站 在线支付功能半路学网站建设难吗
  • 沂南网站优化wordpress 直播网站
  • word+没有安装wordpress安卓优化大师老版本
  • 东莞阳光网站官网装饰设计乙级资质
  • 网站 版本 白名单 wap 解析广告网站设计公司
  • 网站首页的动态视频怎么做的手机软件怎么做
  • 在网站文章锚文本怎么做郑州做企业网站的
  • 建站之星做网站吐鲁番市网站建设
  • 新注册的公司怎么做网站局域网wordpress
  • 电子商务公司网站建立广州建设网站是什么
  • 中企动力建设的网站如何修改网页设计培训(可0基础)
  • 360网站空间找个人做网站还是找企业做网站
  • 人工智能ai写作网站免费微分销平台登陆
  • 基于django的电子商务网站设计四川中成煤炭建设集团网站
  • 北京建设招标信息网站做网站备案是什么意思
  • 石家庄网站搭建jsp做网站
  • 网站设计与开发培训班外贸网站seo招聘
  • 网站开发文档上传服务器海拉尔网站建设sjteam