当前位置: 首页 > news >正文

微信防红短链接生成网站seo排名

微信防红短链接生成,网站seo排名,网站的软文 怎么做推广方案,酒店如何做网络营销目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 💥1 概述 小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想&#xf…

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想,通过将原始问题转化为小波空间中的线性问题,然后进行求解。以下是一维非线性IVP测试问题的求解步骤:

1. 确定目标问题:首先,确定你要解决的一维非线性IVP测试问题。这可能涉及到一个非线性的微分方程和一些边界条件。

2. 小波基函数选择:选择适当的小波基函数来表示问题中的解。小波基函数应该具有良好的局部特性和适应性,以便更好地表示原始问题。常见的小波基函数包括Haar小波、Daubechies小波和Symlet小波等。

3. 建立小波变换:通过将问题转化为小波空间中的线性问题来建立小波变换。这可以通过将解函数和微分方程表示为小波基函数的线性组合来实现。

4. 线性方程求解:将小波变换应用于原始问题后,将其转化为一组线性方程。通过求解这组线性方程来获得小波系数,从而得到原始问题的近似解。

5. 逆小波变换:将得到的小波系数和小波基函数的逆变换应用于小波空间,将解转换回原始空间。这将给出原始问题的近似解。

6. 结果评估:评估求解结果的准确性和收敛性。可以比较近似解与真实解之间的差异,并检查所采用的小波基函数的适用性。

需要注意的是,小波哈尔法(WHM)是一个高级的数值方法,需要掌握小波分析和线性代数的基础知识。在实施过程中,还需进行适当的数值技巧,如数值积分和线性方程求解等。

📚2 运行结果

 

部分代码:

% step 1
% collocation points
J = 3;                              % level of decomposition
N = 2^(J + 1); % N = 2M             % number of basis functions
j = 1:N;                            % index of grid points
x = (j - 0.5) ./ N;                 % grid points

% step 2
% initial values
alpha1 = 0;                         % initial value of a function
beta1  = - 1;                       % initial value of the first derivative
a1     = beta1 - alpha1;

% step 3
% Newton solver
W = zeros(N,N);
f = zeros([N 1]);
a = zeros([N 1]);

epsilon = 1e-4;
r = ones([N 1]);

iter_ind = 0;
tic
while max(r) > epsilon   
    for j = 1:N
        % f(x) computation 
        % H, P1, P2 computation
        H = 0;               
        P1 = 0;
        P2 = 0;
        for i = 1:N
            H  = H  + a(i) * haar(x(j), i, J);
            P1 = P1 + a(i) * p1(x(j), i, J);
            P2 = P2 + a(i) * p2(x(j), i, J);            
        end;
        
        f(j) = 2 * (alpha1 + beta1 * x(j) + P2) * ...
            (beta1 + P1) + H;  
        
        
        % W(x) matrix computation        
        for k = 1:N
            W(j,k) = 2 * p2(x(j),k,J) * (beta1 + P1) + ...
                2 * (alpha1 + beta1 * x(j) + P2) * p1(x(j),k,J) + haar(x(j),k,J);            
        end; % for k
    end; % for j
    
    a_new = W \ (W*a - f);      % linear system solution
    r = abs(a_new - a);         % residual 
    disp(['iteration: ' num2str(iter_ind) ' error Newton: ' num2str(max(r))])   
    
    % Update variables
    a = a_new;
    iter_ind = iter_ind + 1;
end; % while
toc

% Reconstruct approximate solution
y = zeros(N,1);
for j = 1:N    
    S = 0;
    for i = 1:N
        S = S + a(i) * p2(x(j),i,J);
    end
    y(j) = alpha1 + x(j) * beta1 + S;
end; % for

%% Exact solution
yexact = - tan(x);
% critical point pi/2 ~= 1.5708
x_zero1 = 0.5 * pi; 

%% Runge - Kutta method
[x, y1] = ode113('model0', x, [alpha1 beta1]);

%% Plot graphics
set(0,'defaulttextinterpreter','latex')
set(0,'defaultaxesfontname','times')
set(0,'defaultaxesfontsize',12)

oft = 0.01;

% fig:01
figure('color','w')
plot(x,yexact,'g',x,y,'rs',x,y1(:,1),'b.')
xlabel('$x$'); ylabel('$y$');
title(['J = ' num2str(J) ', ' '2M = ' num2str(N)])
legend('Exact','WHM', 'RGK')
axis([-oft 1+oft min(yexact)-oft max(yexact)+oft])

% Absolute errors
rRGK = abs(y1(:,1) - yexact');
rWHM = abs(y - yexact');
rRW = abs(y - y1(:,1));

% fig:02
figure('color','w')
plot(x,rRGK,'b.-',x,rWHM,'r.-',x,rRW,'ms-')
xlabel('$x$'); ylabel('Absolute Error');
title('Absolute Error: $\max|y_{numeric} - y_{analytic}|$')
legend('RGK','WHM','Between RGK and WHM',...
    'Location','northoutside','Orientation','horizontal')
axis([-oft 1+oft min([rRGK; rWHM; rRW])-oft max([rRGK; rWHM; rRW])+oft])

%% Disp Errors
disp(['error RGK: ' num2str(max(rRGK)) ' error WHM: ' num2str(max(rWHM)) ...
    ' error RW: ' num2str(max(rRW))])

%% Save data
if flag == 1    
    cd 'dat'
    
    table0 = [x yexact' y y1(:,1)];
    fid = fopen('table0.txt','w');
    fprintf(fid, '%6.2f %6.2f %6.2f %6.2f\n', table0');
    
    fclose(fid);
    disp('Saved.')
 

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1] Siraj-ul-Islam, Imran Aziz, Bozidar Sarler, "The numerical solution 
      of second-order boundary-value problems by collocation method with 
      the Haar wavelets,"Mathematical and Computer Modelling, Vol. 52, 
      No. 9-10, 1577-1590, 2012.

[2] Sahoo, Bishnupriya, "A study on solution of differential equations 
      using Haar wavelet collocation method, MSc thesis, 2012.
 

🌈4 Matlab代码实现

http://www.tj-hxxt.cn/news/128750.html

相关文章:

  • 怎么查一个网站是谁做的网站建站
  • 中小企业网络营销案例企业seo顾问
  • web网站开发分享网站产品推广方案ppt模板
  • 期货网站做模拟市场营销四大基本策略
  • 张家港英文网站制作营销型网站制作建设
  • 英文外贸网站建设网站设计方案关键词优化seo排名
  • mvc在网站开发中的应用安徽网络推广
  • 做全景图的网站旅行网站排名
  • 技工设计制作义齿图片成都seo优化公司
  • 广州建设专修学院seo导航
  • 做专业的热转印材料门户网站广东省广州市佛山市
  • 广州开发区建设环境保护局网站在线收录
  • 网站空间和数据库空间百度seo排名优化公司哪家强
  • 如何做新闻网站武汉软件测试培训机构排名
  • webmaster网站制作bt鹦鹉磁力
  • 做网站需要哪些审核seo推广软件下载
  • ftp无法直接wordpress夫唯seo教程
  • 网站后台一般是用什么做的张雪峰谈广告学专业
  • 建设企业外贸网站网络营销常见术语
  • 做论坛网站如何赚钱的百度云官方网站
  • 网站开发网络公seo网络营销课程
  • 如何用python开发网页宁波seo推广推荐公司
  • 移动网站二级域名m开头怎么做博客营销
  • 网站建设的收费标准现在做百度推广有用吗
  • 网站建设与管理总结百度免费推广
  • 建设工程合同司法解释seo研究中心官网
  • 家里公网宽带做网站要备案么如何在百度推广自己的产品
  • 日照东港建设局网站中国网络优化公司排名
  • 安徽省住房建设厅网站百度排行榜明星
  • 遂宁网站开发seo按照搜索引擎的什么对网站