当前位置: 首页 > news >正文

竞争对手 网站流量日本今日新闻头条

竞争对手 网站流量,日本今日新闻头条,建立拼音,白山市城乡建设局网站groupby 是数据分析中一个非常强大的操作,可以根据指定的规则将数据拆分成多个组,并对每个组进行聚合、转换或过滤等操作。我们逐个解释这些参数的作用,并通过数值举例进行说明。 参数解释 by:分组依据 by 参数指定了分组的依据&…

groupby 是数据分析中一个非常强大的操作,可以根据指定的规则将数据拆分成多个组,并对每个组进行聚合、转换或过滤等操作。我们逐个解释这些参数的作用,并通过数值举例进行说明。

参数解释

  1. by:分组依据

    • by 参数指定了分组的依据,可以是:
      • 函数:对于数据的每个索引(或列)应用该函数,生成一个新的值,根据这些值进行分组。
      • 字典Series:可以通过字典或 Series 来指定分组的规则。字典的键是原数据的索引,值是分组的标签。
      • ndarray:可以直接用数组来指定每一行或列所属的分组。
  2. axis:拆分的方向

    • axis 参数指定了操作的方向:
      • axis=0:按行分组(默认)。
      • axis=1:按列分组。
  3. level:多层索引的分组层级

    • level 参数适用于多层索引(MultiIndex)。可以指定按某个层级或多个层级进行分组。
  4. as_index:是否将分组键作为索引

    • 默认值是 True,即返回的结果会把分组的标签作为新的索引。
    • 如果设置为 False,则不会将分组标签作为索引,而是作为普通列显示。
  5. sort:是否对分组进行排序

    • 默认值是 True,表示对每个组的标签进行排序。
    • 如果设置为 False,则分组内的顺序与原数据中的顺序一致,通常会提高性能。
  6. group_keys:是否将组键添加到结果中

    • 默认值是 True,即返回的结果会包含分组键,标明每个组的来源。
    • 如果为 False,则不添加组键。
  7. observed:分类数据的显示方式

    • 当分组是分类数据时,observed=True 会只显示有实际数据的分类值,而不会显示所有的分类值(包括那些没有数据的分类)。
    • 如果设置为 False,则会显示所有可能的分类值。
  8. dropna:是否删除包含 NA 的组

    • 如果为 True,则包含 NA 值的组会被删除。
    • 如果为 False,NA 值会被当作一个组处理。

举例说明

假设我们有以下的 DataFrameSeries 数据:

import pandas as pd# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, 2, 3, 4, 5],'B': ['X', 'Y', 'X', 'Y', 'X', 'Y'],'C': [10, 20, 30, 40, 50, 60]
})

输出:
在这里插入图片描述

1. by:按列分组

我们可以按照 B 列的值来对 df 进行分组:

grouped = df.groupby('B')
for name, group in grouped:print(f"Group: {name}")print(group)
print(grouped.sum())

输出:
在这里插入图片描述

2. axis:按列分组

如果你想按列分组而不是按行分组,可以设置 axis=1

grouped = df.groupby(axis=1, level=0)
for name, group in grouped:print(f"Group: {name}")print(group)

这个例子不太常见,通常 groupby 更常用于行分组,但这会按列的方式分组。输出中会提醒不建议这么做:
在这里插入图片描述

3. level:多层索引分组

假设你有一个多层索引的 DataFrame,你可以按指定的层级进行分组。

# 创建一个 MultiIndex DataFrame
index = pd.MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)],names=['letter', 'number'])
df_multi = pd.DataFrame({'A': [1, 2, 3, 4],'B': [5, 6, 7, 8]
}, index=index)# 按 'letter' 层级进行分组
grouped = df_multi.groupby(level='letter')
for name, group in grouped:print(f"Group: {name}")print(group)

输出:

Group: aA  B
letter number      
a      1      1  52      2  6Group: bA  B
letter number      
b      1      3  72      4  8

更多例子

4. as_index:是否将分组键作为索引

我们可以设置 as_index=False,让分组键不成为新的索引。

grouped = df.groupby('B', as_index=False)
print(grouped.sum())

输出:
在这里插入图片描述

5. sort:是否排序分组

如果 sort=False,则按照原始数据的顺序进行分组,而不是按照分组键的顺序排序:

grouped = df.groupby('B', sort=False)
for name, group in grouped:print(f"Group: {name}")print(group)

输出:

Group: XA  B   C
0  1  X  10
2  2  X  30
4  4  X  50Group: YA  B   C
1  2  Y  20
3  3  Y  40
5  5  Y  60
6. dropna:是否删除包含NA值的组

如果你有一些 NA 值,并设置 dropna=True,它会删除包含 NA 的组:

df_with_na = pd.DataFrame({'A': [1, 2, 3, None, 5],'B': ['X', 'Y', 'X', 'Y', 'X'],'C': [10, 20, 30, 40, None]
})grouped = df_with_na.groupby('B', dropna=True)
print(grouped.sum())

输出:

总结

  • groupby 是根据某些规则将数据拆分为多个组,然后对每个组进行计算。可以根据 byaxislevel 等参数灵活控制分组的方式。
  • 常用的操作包括按列分组、按层级分组、控制排序和是否删除包含 NA 值的组。
http://www.tj-hxxt.cn/news/12502.html

相关文章:

  • 个人微信小程序教程宁德seo培训
  • 涪陵网站建设公司域名网站查询
  • 网站收费系统平台今天最火的新闻头条
  • 苏州园区做网站公司下载百度官方网站
  • 长沙企业网站建设中国市场营销网网站
  • 高端网站设计建站淘宝搜索关键词排名
  • 做logo那个网站杭州全网推广
  • 找公司做网站需要注意什么seo自学教程seo免费教程
  • 中国人做外贸网站都卖什么今日头条极速版最新
  • 网站开发的计划书链接购买平台
  • 2022最新英雄合击手游关键词优化方法
  • wordpress插件放到哪百度关键词优化送网站
  • 南汇网站建设seo智能优化软件
  • 怎么把自己笔记本做服务器做个网站百度霸屏推广
  • 公司网站放哪些内容陕西网络营销优化公司
  • 做网站建设业务员好吗百度公司排名
  • 最便宜做网站的方法专业网站优化外包
  • 电商网站前后台模板百度指数官网数据
  • 百度云服务器做网站稳定吗新冠疫苗接种最新消息
  • 做微信扫码网站seo基本步骤
  • wordpress登录入口关键词排名优化品牌
  • dns是不是做网站用的广州白云区最新信息
  • 用dw做旅游网站的方法seo整站排名
  • 网站推广的内容域名被墙污染查询
  • 互联网骗局浏览网站做任务seo公司seo教程
  • 2_网站建设的一般步骤包含哪些网页制作作业100例
  • 网站规划书包括哪些内容百度浏览器下载安装
  • 江门专业做网站增加百度指数的四种方法
  • 做购物网站要多少钱如何优化网络
  • 建设网站需要的资料免费写文案神器