当前位置: 首页 > news >正文

大连企业网站建设关键词广告

大连企业网站建设,关键词广告,网站策划与设计,做微商网站需要哪些我需要Kalman 现在,主要是用来处理检测问题情况里的漏检,因为模拟了一段2D, (x,y)的数据,为了看效果,画的线尽量简单一点: import numpy as np import matplotlib.pyplo…

我需要Kalman 现在,主要是用来处理检测问题情况里的漏检,因为模拟了一段2D, (x,y)的数据,为了看效果,画的线尽量简单一点:

import numpy as np
import matplotlib.pyplot as pltdef generate_trace(initial_position, velocity, acceleration, num_points, noise_std):x = np.zeros(num_points)y = np.zeros(num_points)x[0], y[0] = initial_positionfor i in range(1, num_points):x[i] = x[i - 1] + velocity[0] + 0.5 * acceleration[0] * i ** 2y[i] = y[i - 1] + velocity[1] + 0.5 * acceleration[1] * i ** 2x[i] += np.random.normal(0, noise_std)y[i] += np.random.normal(0, noise_std)return x, ydef add_missing_points(trace, missing_percentage):num_missing = int(len(trace) * missing_percentage)missing_indices = np.random.choice(len(trace), num_missing, replace=False)print(missing_indices)return missing_indicesinitial_position = (0, 0)
velocity = (5, 3)
acceleration = (0.2, 0.1) 
num_points = 20
noise_std = 10
missing_percentage = 0.3x, y = generate_trace(initial_position, velocity, acceleration, num_points, noise_std)
plt.figure(figsize=(12, 6))
plt.plot(x, y, 'go', label='Original Trace')missing_pos = add_missing_points(x.copy(), missing_percentage)plt.plot(x[missing_pos], y[missing_pos], 'rx', label='Missing Points')x[missing_pos] = np.nan
y[missing_pos] = np.nan
plt.plot(x, y, 'y--', label='Original Trace')
trace = np.vstack((x, y)).T
np.savetxt("car_trace.csv", trace, delimiter=",")plt.xlabel('X Position')
plt.ylabel('Y Position')
plt.title('Traces')
plt.legend()
plt.savefig('car_trace.png')
plt.show()

在这里插入图片描述
绿色点:理想情况能检测到每个位置
红色×:假设的漏检情况
接下来就看KF 、 UKF怎么处理我的漏检了,这取决于它们的predict

Prior

Ok,在deep diveUKF & KF 前,有一些参数的definition需要我们的大脑建立一下短暂的存储,我经常分不清字母谁是谁…那我们就全程围绕filterpy这个库吧

class KF:def __init__(self, dt):self.dt = dtself.dim_x = 6  # x, y, vx, vy, ax, ayself.dim_z = 2  # Measurements: x, yself.kf = KalmanFilter(dim_x=self.dim_x, dim_z=self.dim_z)self.kf.F = np.array([[1, 0, dt, 0, 0.5*dt**2, 0],[0, 1, 0, dt, 0, 0.5*dt**2],[0, 0, 1, 0, dt, 0],[0, 0, 0, 1, 0, dt],[0, 0, 0, 0, 1, 0],[0, 0, 0, 0, 0, 1]])self.kf.H = np.array([[1, 0, 0, 0, 0, 0],[0, 1, 0, 0, 0, 0]])self.kf.P *= 1.0q = 0.1self.kf.Q = np.array([[q, 0, 0, 0, 0, 0],[0, q, 0, 0, 0, 0],[0, 0, q, 0, 0, 0],[0, 0, 0, q, 0, 0],[0, 0, 0, 0, q, 0],[0, 0, 0, 0, 0, q]])r = 0.5**2self.kf.R = np.array([[r, 0],[0, r]])
class EUKF:def __init__(self, dt):self.dt = dtself.dim_x = 6  # x, y, vx, vy, ax, ayself.dim_z = 2  # Measurements: x, yself.points = MerweScaledSigmaPoints(n=self.dim_x, alpha=0.001, beta=2.0, kappa=0)self.ukf = UKF(dim_x=self.dim_x, dim_z=self.dim_z, fx=self.f_process, hx=self.h_measurement,dt=self.dt, points=self.points)self.ukf.P = np.diag([1.0, 1.0, 100.0, 100.0, 1000.0, 1000.0])self.ukf.Q = np.diag([0.1, 0.1, 0.1, 0.1, 0.05, 0.05])self.ukf.R = np.diag([0.5**2, 0.5**2])

两个算法的common 参数如下:
dim_x : 这个代表你的feature维度,这个看需要设置,比如我的states是:x, y, vx, vy, ax, ay,那么这里就是6
dim_z:这个代表你的目标输出维度,比如我需要追踪,那么位置(x,y)是我的目标输出,这里就是2
dt:这个代表standard unit,物理上为1(我们常说的每秒)个单位长度,在CV处理上,我们是1秒30帧,因为处理的是图像信息,所以我们的标准单位应该是基于frame的秒,1个frame为1/30 秒的处理单位时长,这里一般赋值1/30

以下三个大写字母都是各种covariance
P:covariance estimate matrix表示对状态估计的不确定性

Q:process noise matrix影响滤波器在预测步骤中对过程模型的信任程度。较大的Q值表示滤波器认为过程模型的不确定性较大,从而对预测结果的置信度降低

R:measurement noise matrix表示测量中的噪声,较大的R值表示滤波器认为测量数据的不确定性较大,从而对测量更新的影响减小

Tips:

通常来说,P在用UKF/KF 过程,用不停的输入来调整自己。而Q,R是初始后就不变的。

KF:使用线性状态转移矩阵 F。状态预测由矩阵乘法完成
UKF:使用非线性状态转移函数 f_process。通过对 sigma 点进行无迹变换,实现状态预测。
在这里插入图片描述

http://www.tj-hxxt.cn/news/12110.html

相关文章:

  • 网站开发中的paml好用的seo软件
  • 优质的外国网站怎么样做推广
  • b2b免费网站建设seo 优化 工具
  • 免费网站建设开发海南百度推广公司
  • b赣州网站建设seo公司网站推广
  • 网站静态图怎么做邯郸网站seo
  • 吉林网站建设如何设计企业网站
  • 深圳最专业的高端网站建设新浪博客
  • 网站建站公司费用如何做推广宣传
  • 首选大型网站建站公司优化落实新十条措施
  • wordpress转到手机端关键词优化计划
  • seo网站优化方百度明星人气排行榜
  • 免费搭建个人博客网站哪里有软件培训班
  • 做网站公司简介模版营销策划方案模板
  • 网站建设实习困难怎么知道网站有没有被收录
  • 做外国网站自媒体经典营销案例100例
  • 建材公司网站建设方案整合营销公司排名
  • 濮阳创建网站公司新乡seo推广
  • 个人做网站需要注意什么百度400电话
  • 如何做病毒视频网站东莞做网站公司电话
  • 网站描述关键词西安高端模板建站
  • wordpress国外博客主题企业网站的优化建议
  • 相关网站建设seo基础视频教程
  • 电子书新手学做网站mac日本官网入口
  • 正定县建设局网站app优化
  • 无水印效果图网站如何搭建公司网站
  • 门户网站 技术方案今日特大新闻新事
  • 软件研发和开发哪个工资高安卓优化大师全部版本
  • 广州网站制作武汉永久免费进销存管理软件手机版
  • 惠州网站制作定制宁德市疫情