当前位置: 首页 > news >正文

网页网站原型图占位符怎么做小程序seo

网页网站原型图占位符怎么做,小程序seo,哈尔滨建设信息网,天眼查官网在线查询Python中聚类算法API的使用指南 聚类分析是数据分析中一种常见的无监督学习方法,通过将相似的对象分组在一起,我们能够识别出数据集中的自然分群。本文将介绍如何使用Python中的聚类算法接口,KMeans和层次聚类方法。 K-Means 聚类 K-Means…

Python中聚类算法API的使用指南

聚类分析是数据分析中一种常见的无监督学习方法,通过将相似的对象分组在一起,我们能够识别出数据集中的自然分群。本文将介绍如何使用Python中的聚类算法接口,KMeans层次聚类方法。

K-Means 聚类

K-Means是一种广泛使用的聚类算法,它的目标是将数据点分成K个组,使得组内的点彼此相似,而组间的点不相似。下面是如何使用K-Means聚类分析的步骤:

步骤一:导入必要的库

首先,需要导入KMeans类,它在sklearn.cluster模块中。

from sklearn.cluster import KMeans

步骤二:加载数据

我们使用pandas库来加载数据。确保数据文件的路径是正确的。

import pandas as pddf = pd.read_excel(CLUS_FILE_PATH, index_col=0)

步骤三:应用K-Means聚类

创建一个KMeans实例,并通过.fit()方法应用于数据。

kmeans = KMeans(n_clusters=3, random_state=0).fit(df)

步骤四:保存聚类结果

将聚类标签添加到原始数据框中,并保存到Excel文件。

df['Cluster'] = kmeans.labels_
df.to_excel('kmeans聚类分析结果.xlsx')

层次聚类

层次聚类是另一种常见的聚类方法,它通过构建一个多层次的嵌套分群树来组织数据,这个树被称为树状图(Dendrogram)。相对于K-Means,层次聚类不需要指定k值就可以完成聚类,但是要分类出标签的话,我们需要指定一个距离,如果两个样本超出这个距离则不属于同一类。

步骤一:导入库

导入进行层次聚类和绘制树状图所需的库。

from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from scipy.spatial.distance import pdist

步骤二:加载数据并计算距离矩阵

同样地,我们先加载数据,然后计算距离矩阵,使用欧式距离。

df = pd.read_excel(CLUS_FILE_PATH, index_col=0)
distance_matrix = pdist(df, metric='euclidean')

步骤三:执行层次聚类

使用linkage函数进行层次聚类,这里采用了’ward’方法。

Z = linkage(distance_matrix, method='ward')

步骤四:确定聚类数并保存结果

通过选择一个最大距离阈值来确定聚类数,并把聚类结果保存到Excel。

clusters = fcluster(Z, max_d=50, criterion='distance')
df['Cluster'] = clusters
df.to_excel('层次聚类分析结果.xlsx')

步骤五:绘制树状图并保存

最后,利用dendrogram函数绘制树状图,并保存为图片。

plt.figure(figsize=(10, 50))
dendrogram(Z, orientation='left', labels=df.index, leaf_rotation=0, leaf_font_size=10)
plt.title('层次聚类的树状图')
plt.ylabel('中药名称')
plt.xlabel('距离')
plt.tight_layout()
plt.savefig('层次聚类树状图.png')
plt.show()
层次聚类的树状图

我们可以看到,各个中药被层次聚类组织成了一颗一颗嵌套的树,这些树描述了不同中药之间的距离关系。
在这里插入图片描述

上面的步骤展示了如何使用Python进行K-Means聚类和层次聚类分析。聚类是一个强大的工具,可以帮助我们发现数据中的模式和结构。通过实践这些步骤,你会对聚类分析有更深的了解。

利用PCA降维以可视化聚类结果

绘图函数(可直接复制,然后按下文调用)

def plot_clus_2D(clustered_data, class_col, method):n_clusters = clustered_data[class_col].nunique()# 执行PCA降维,降至2维pca = PCA(n_components=2)data_reduced = pca.fit_transform(clustered_data.drop(columns=[class_col]))# 创建一个新的DataFrame来保存降维后的数据和聚类标签data_2D = pd.DataFrame(data_reduced, columns=['PC1', 'PC2'])data_2D[class_col] = clustered_data[class_col].values# 设置绘图参数fig, ax = plt.subplots(figsize=(10, 8))# 为每个聚类设置不同的颜色colors = ['red', 'green', 'blue']  # 你可以根据需要的聚类数修改颜色if n_clusters > 3:  # 如果聚类数超过3,扩展颜色列表import matplotlib.colors as mcolorscolors = list(mcolors.TABLEAU_COLORS.values())[:n_clusters]# 绘制每个聚类的散点图for i in range(n_clusters):# 从聚类数据中提取当前聚类的数据cluster_data = data_2D[data_2D[class_col] == i]# 绘制散点图ax.scatter(cluster_data['PC1'], cluster_data['PC2'],color=colors[i], label=f'Cluster {i}', alpha=0.5)# 添加图例和标题ax.legend()ax.set_title(f'{method} 聚类结果 - PCA降维可视化(2D)')ax.set_xlabel('Principal Component 1')ax.set_ylabel('Principal Component 2')# 显示图表save_path = os.path.join(IMAGE_FOLDER, f'{method} 聚类结果 - PCA降维可视化(2D).png')plt.savefig(save_path)plt.show()def plot_clus_3D(clustered_data, class_col, method):""":param clustered_data: 带有聚类结果标签的数据集:param class_col: 代表聚类结果的列名:param n_clusters: 有多少个:param method::return:"""n_clusters = clustered_data[class_col].nunique()# 执行PCA降维,降至3维pca = PCA(n_components=3)data_reduced = pca.fit_transform(clustered_data.drop(columns=[class_col]))# 创建一个新的DataFrame来保存降维后的数据和聚类标签data_3D = pd.DataFrame(data_reduced, columns=['PC1', 'PC2', 'PC3'])data_3D[class_col] = clustered_data[class_col].values# 设置绘图参数fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 为每个聚类设置不同的颜色colors = ['red', 'green', 'blue']  # 根据需要的聚类数修改颜色if n_clusters > 3:  # 如果聚类数超过3,扩展颜色列表import matplotlib.colors as mcolorscolors = list(mcolors.TABLEAU_COLORS.values())[:n_clusters]# 绘制每个聚类的散点图for i in range(n_clusters):# 从聚类数据中提取当前聚类的数据cluster_data = data_3D[data_3D[class_col] == i]# 绘制散点图ax.scatter(cluster_data['PC1'], cluster_data['PC2'], cluster_data['PC3'],color=colors[i], label=f'Cluster {i}', alpha=0.5)# 添加图例和标题ax.legend()ax.set_title(f'{method} 聚类结果 - PCA降维可视化(3D)')ax.set_xlabel('Principal Component 1')ax.set_ylabel('Principal Component 2')ax.set_zlabel('Principal Component 3')# 显示图表save_path = os.path.join(IMAGE_FOLDER, f'{method}_聚类结果_PCA降维可视化(3D).png')plt.savefig(save_path)plt.show()

示例调用

clus_data = pd.read_excel('kmeans聚类分析结果.xlsx', index_col=0)
plot_clus_2D(clustered_data=clus_data, class_col='Cluster', method='K-means')
plot_clus_3D(clustered_data=clus_data, class_col='Cluster', method='K-means')clus_data = pd.read_excel('层次聚类分析结果.xlsx', index_col=0)
plot_clus_2D(clustered_data=clus_data, class_col='Cluster', method='层次聚类')
plot_clus_3D(clustered_data=clus_data, class_col='Cluster', method='层次聚类')

2D可视化

K-Means聚类结果

在这里插入图片描述

层次聚类结果

在这里插入图片描述

3D可视化

K-Means聚类结果

在这里插入图片描述

层次聚类结果

在这里插入图片描述

http://www.tj-hxxt.cn/news/120506.html

相关文章:

  • 网架公司需要给设计院提交的资料郑州关键词seo
  • 什么网站容易做流量发表文章的平台有哪些
  • 信宜做网站设置建站软件
  • 法国网站域名seo面试常见问题及答案
  • 杭州网站设计公司推荐收录优美图片
  • 公司注册地址和实际不一样可以吗北京seo网站推广
  • 深圳市建设集团百度seo灰色词排名代发
  • 做淘宝客网站需要多大带宽seo点击排名
  • wordpress可以做网站吗宁波最好的seo外包
  • 蓝海国际版网站建设怎么自己创建一个网页
  • wordpress绕过媒体江门seo推广公司
  • 做网站怎么赚钱广告万能搜索
  • 做餐饮网站建设seo网站培训优化怎么做
  • wordpress显示标题app优化建议
  • 丽水公司做网站seo搜索引擎优化方法
  • 重庆市建设银行网站首页就在刚刚武汉宣布最新消息
  • 怎么用网站建设西安seo外包公司
  • 运城市做网站公司淘宝怎么设置关键词搜索
  • 西安微信网站开发太原百度快速优化排名
  • 帝国系统怎样做网站地图360seo
  • 大片网站在线观看视频app营销策略都有哪些
  • 团队展示网站成功的软文营销案例
  • 手机传奇手游发布网站免费网络推广的方法
  • 有没有人一起做网站全球十大搜索引擎入口
  • discuz怎么做h5网站站长网站工具
  • 三六五网做网站吗如何进行网站推广
  • 做民宿要给网站多少合同钱上海优化网站seo公司
  • 做cpa一定要有网站360搜索引擎首页
  • 关于协会网站建设的意见百度小说搜索热度排行榜
  • wordpress下载站会员系统如何进行网络推广营销