当前位置: 首页 > news >正文

怎样开通app软件郑州网站优化seo

怎样开通app软件,郑州网站优化seo,佛山企业网站建设咨询,福田区做网站公司有大量二维矩阵作为样本,为连续数据。数据具有空间连续性,因此用卷积网络,通过dcgan生成二维矩阵。因为是连续变量,因此损失采用nn.MSELoss()。 import torch import torch.nn as nn import torch.optim as optim import numpy a…

有大量二维矩阵作为样本,为连续数据。数据具有空间连续性,因此用卷积网络,通过dcgan生成二维矩阵。因为是连续变量,因此损失采用nn.MSELoss()。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from DemDataset import create_netCDF_Dem_trainLoader
import torchvision
from torch.utils.tensorboard import SummaryWriterbatch_size=16
#load data
dataloader = create_netCDF_Dem_trainLoader(batch_size)# Generator with Conv2D structure
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()self.model = nn.Sequential(nn.ConvTranspose2d(100, 512, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(512),nn.ReLU(),nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(512),nn.ReLU(),nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(256),nn.ReLU(),nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(128),nn.ReLU(),nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(64),nn.ReLU(),nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1),nn.BatchNorm2d(32),nn.ReLU(),nn.ConvTranspose2d(32, 1, kernel_size=4, stride=2, padding=1),nn.Tanh())def forward(self, z):img = self.model(z)return img# Discriminator with Conv2D structure
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.model = nn.Sequential(nn.Conv2d(1, 32, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(512, 512, kernel_size=4, stride=2, padding=1),nn.LeakyReLU(0.2),nn.Conv2d(512, 1, kernel_size=4, stride=2, padding=1),)def forward(self, img):validity = self.model(img)return validity# Initialize GAN components
generator = Generator()
discriminator = Discriminator()# Define loss function and optimizers
criterion = nn.MSELoss()
optimizer_G = optim.Adam(generator.parameters(), lr=0.0002, betas=(0.5, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr=0.0002, betas=(0.5, 0.999))device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator.to(device)
discriminator.to(device)writer_real = SummaryWriter(f"logs/real")
writer_fake = SummaryWriter(f"logs/fake")
step = 0# Training loop
num_epochs = 200
for epoch in range(num_epochs):for batch_idx, real_data in enumerate(dataloader):real_data = real_data.to(device)# Train Discriminatoroptimizer_D.zero_grad()real_labels = torch.ones(real_data.size(0), 1).to(device)fake_labels = torch.zeros(real_data.size(0), 1).to(device)z = torch.randn(real_data.size(0), 100, 1, 1).to(device)fake_data = generator(z)real_pred = discriminator(real_data)fake_pred = discriminator(fake_data.detach())d_loss_real = criterion(real_pred, real_labels)d_loss_fake = criterion(fake_pred, fake_labels)d_loss = d_loss_real + d_loss_faked_loss.backward()optimizer_D.step()# Train Generatoroptimizer_G.zero_grad()z = torch.randn(real_data.size(0), 100, 1, 1).to(device)fake_data = generator(z)fake_pred = discriminator(fake_data)g_loss = criterion(fake_pred, real_labels)g_loss.backward()optimizer_G.step()# Print progressif batch_idx % 100 == 0:print(f"[Epoch {epoch}/{num_epochs}] [Batch {batch_idx}/{len(dataloader)}] [D loss: {d_loss.item():.4f}] [G loss: {g_loss.item():.4f}]")with torch.no_grad():img_grid_real = torchvision.utils.make_grid(fake_data#, normalize=True,)img_grid_fake = torchvision.utils.make_grid(real_data#, normalize=True)writer_fake.add_image("fake_img", img_grid_fake, global_step=step)writer_real.add_image("real_img", img_grid_real, global_step=step)step += 1# After training, you can generate a 2D array by sampling from the generator
z = torch.randn(1, 100, 1, 1).to(device)
generated_array = generator(z)

http://www.tj-hxxt.cn/news/119003.html

相关文章:

  • 做网站banner分辨率设置多大企业网络组建方案
  • 做营销网站的企业长春网站制作公司
  • 现在大家做电商网站用什么源码大数据获客系统
  • 中国建设银行公积金网缴网站视频营销的策略与方法
  • 做网站和做网店哪个好nba最新消息交易情况
  • 如何做网站页面河北百度seo关键词排名
  • 做装修网站多少钱sem分析是什么
  • 深圳建站推广公司网络营销模式下品牌推广研究
  • 永川网站制作seo做得比较好的企业案例
  • 昆明电子商务网站建设中国十大网站排名
  • 网站建设该如何学软件开发流程
  • wordpress怎样做单页网站临沂百度seo
  • wordpress接入翼支付宝seo的概念是什么
  • 常德网站建设详细策划淘宝关键词推广
  • 上海高端网站设计外链发布平台有哪些
  • 网站改版怎样做301地域名网址查询
  • 阿里巴巴外贸网站首页sem推广是什么意思
  • 大型网站开发案例深圳营销型网站
  • 青岛济南网站制作石家庄关键词排名首页
  • 网站栏目页面潍坊自动seo
  • 在线用代码做网站苏州网站排名推广
  • 海南行指专业网站开发建网站有哪些步骤
  • 广州正规网站建设企业专业网站建设公司
  • 网络营销的特点包括哪些白城seo
  • 温州网站制作策划安徽网站推广优化
  • 平面设计可以做网站seo站长博客
  • 做推广比较好的网站网站外链怎么发布
  • 静海县建设局网站兰州网站seo
  • 独立网站怎样建设seo网站诊断
  • 专业建站公司设计百度关键词挖掘