当前位置: 首页 > news >正文

网站测试页面怎么做百度排名怎么做

网站测试页面怎么做,百度排名怎么做,杭州品牌网站建设推广,可以做水果的团购网站算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理 欧拉函数AcWing 874. 筛法求欧拉函数 快速幂AcWing 875. 快速幂AcWing 876. 快速幂求逆元 扩展欧几里德(裴蜀定理)AcWing 877. 扩展欧几里得算法AcWing 878. 线性同余方程 中国剩余定理…

算法基础-数学知识-欧拉函数、快速幂、扩展欧几里德、中国剩余定理

  • 欧拉函数
    • AcWing 874. 筛法求欧拉函数
  • 快速幂
    • AcWing 875. 快速幂
    • AcWing 876. 快速幂求逆元
  • 扩展欧几里德(裴蜀定理)
    • AcWing 877. 扩展欧几里得算法
    • AcWing 878. 线性同余方程
  • 中国剩余定理

欧拉函数

在这里插入图片描述
在这里插入图片描述

互质就是两个数的最大公因数只有1,体现到代码里面就是a和b互质,则b mod a = 1 mod a (目前我不是很理解,但是可以这样理解:a和b的最大公因数是1,即1作为除数和b作为除数时,对于被除数a来说余数是一样的,即1/a的余数和b/a是一样的,即b mod a = 1 mod a)
欧拉函数的作用是求1-n与n互质的个数

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include <vector>
#include <queue>
#include <map>
#include <unordered_map>
using namespace std;void get_eura(int x)
{int res = x;for (int i = 2; i <= x / i; ++ i){if (x % i == 0){//res = res * (1 - 1/i);或者res = res * (i - 1) / i;都不行,前者是浮点数1 后者会溢出res = res / i * (i - 1);while (x % i == 0){x /= i;}}}if (x > 1) res = res / x * (x - 1);cout << res << endl;
}
void solve()
{int n;cin >> n;while (n -- ){int x;cin >> x;get_eura(x);}
}
int32_t main()
{ios::sync_with_stdio(0);cin.tie(0);int T = 1;//cin >> T;while (T --) solve();return 0;
}

AcWing 874. 筛法求欧拉函数

线性筛 + 欧拉函数(有一点推公式)

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include <vector>
#include <queue>
#include <map>
#include <unordered_map>
using namespace std;
const int N = 1e6 + 10;
int primes[N], st[N], eulers[N];
int cnt;
void get_eulers(int x)
{eulers[1] = 1;  for (int i = 2; i <= x; ++ i)//只是在线性筛的过程中顺便求了一下每个数的欧拉函数{if (!st[i])//1-n的质数{primes[cnt++] = i;eulers[i] = i - 1;}for (int j = 0; primes[j] <= x / i; ++ j)//1-n的合数//任何合数都含有质因数,4 = 1 * 2 * 1 * 2;{st[primes[j] * i] = 1;if (i % primes[j] == 0){eulers[i * primes[j]] = eulers[i] * primes[j];break;//其实也相当于一个else}//eulers[i * primes[j]] = eulers[i] * primes[j] / primes[j] * (primes[j] - 1);eulers[i * primes[j]] = eulers[i] * (primes[j] - 1);}}
}
void solve()
{int n;cin >> n;get_eulers(n);long long res = 0; for (int i = 1; i <= n; ++ i) res += eulers[i];cout << res;
}
int32_t main()
{ios::sync_with_stdio(0);cin.tie(0);int T = 1;//cin >> T;while (T --) solve();return 0;
}

快速幂

1 2 4 8成指数倍增长 log的时间复杂度

AcWing 875. 快速幂

long long qmi(int a, int b, int p)
{long long res = 1;while (b){if (b & 1){res = res * a % p;}a = a * (long long)a % p;b >>= 1;}return res;
}

AcWing 876. 快速幂求逆元

在这里插入图片描述
欧拉函数 =>费马定理 =>快速幂实现费马定理计算结果

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <string.h>
#include <string>
#include <math.h>
#include <vector>
#include <queue>
#include <map>
#include <unordered_map>
using namespace std;long long qmi(int a, int b, int p)
{long long res = 1;while (b){if (b & 1) res = res * a % p;a = (long long)a * a % p;b >>= 1;}return res;
}
void solve()
{int n;cin >> n;while (n --){int a, p;cin >> a >> p;if (a % p == 0) cout << "impossible" << endl;else cout << qmi(a, p - 2, p) << endl;//a需要与m互质,否则a不存在乘法逆元}
}
int32_t main()
{ios::sync_with_stdio(0);cin.tie(0);int T = 1;//cin >> T;while (T --) solve();return 0;
}

扩展欧几里德(裴蜀定理)

AcWing 877. 扩展欧几里得算法

理解递归的本质:
在这里插入图片描述
裴蜀定理和线性同余方程的证明:
在这里插入图片描述

#include <cstdio>
#include <iostream>using namespace std;int exgcd(int a, int b, int &x, int &y)
{if (b == 0){x = 1, y = 0;return a;}//d就是最大公约数,本题其实用不到int d = exgcd(b, a % b, y, x);//本题的精髓/*只是为了方便更改x和y的值,如果用d = exgcd(b, a % b, x, y);最后就解得 新x = y 新y = x - a / b * y那么代码就得这么写int t = y;y = x - a / b * y;x = t;显然比只要写一句 新y -= a / b * x; 麻烦*/y -= a / b * x;return d;
}
void solve()
{int n;cin >> n;while (n -- ){int a, b, x, y;cin >> a >> b;exgcd(a, b, x, y);cout << x << " " << y << endl;}
}
int32_t main()
{ios::sync_with_stdio(0);cin.tie(0);int T = 1;//cin >> T;while (T --) solve();return 0;
}

AcWing 878. 线性同余方程

线性同余方程用扩展欧几里德定理求解
本题推导过程在上面
为什么要% m
在这里插入图片描述

#include <cstdio>
#include <iostream>using namespace std;int exgcd(int a, int b, int &x, int &y)
{if (b == 0){x = 1, y = 0;return a;}else//其实不用else,上面满足直接return了,上面不满足也会走到下面 {int d = exgcd(b, a % b, y, x);y -= a / b * x;return d;}
}
void solve()
{int n;cin >> n;while (n -- ){int a, b, m, x, y;cin >> a >> b >> m;int d = exgcd(a, -m, x, y);if (b % d != 0) cout << "impossible" << endl;else cout << (long long)b / d * x % m << endl;}
}
int32_t main()
{ios::sync_with_stdio(0);cin.tie(0);int T = 1;//cin >> T;while (T --) solve();return 0;
}

中国剩余定理

http://www.tj-hxxt.cn/news/115582.html

相关文章:

  • 汽车建设网站的能力win10优化大师好用吗
  • 宜宾网站建设费用seo优化顾问服务
  • 司局网站维护廉政风险建设自己有域名怎么建网站
  • 交互设计网站推荐网站站点
  • 外贸在哪些网站开发客户seo基础教程使用
  • 什么是移动端网站适配学生班级优化大师
  • 做电影网站要几G空间的360摄像头海澳門地区限制解除
  • jquery 素材的网站网络广告投放
  • 都有什么类别的网站台州网站建设优化
  • 2015做哪些网站能致富百度正版下载
  • 微信网页版公众号网站怎么做网站提交收录软件
  • wordpress全文检索杭州seo技术
  • 星斗科技 网站建设长沙百度关键词搜索
  • 佛山建设外贸网站公司吗seo外链推广
  • 济宁住房和城乡建设局网站2345软件为什么没人管
  • 网站策划步骤百度推广有用吗
  • 网站开发进度设计与阶段目标惠州百度seo找谁
  • 利用云服务器做网站建网站教程
  • 淘宝客云建站网址百度如何添加店铺位置信息
  • 桂林网站建设官网百度关键词优化点击 教程
  • 托管代运营海淀区seo全面优化
  • 做木皮的网站vi设计
  • 临沂网站建设费用百度关键词首页排名怎么上
  • 建网站要钱吗google推广公司
  • 广州网站推广网络营销软文范例500字
  • 自己做的网站标题色盲测试图第五版
  • html5在网站建设中的建站模板网站
  • 做网站常熟出售外链
  • 成都b2b网站制作搜索引擎大全入口
  • 天心区网站建设公司互联网推广引流公司