当前位置: 首页 > news >正文

网校网站模板百度seo排名优化价格

网校网站模板,百度seo排名优化价格,网站模板预览,做电商需要知道的几个网站四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵) 在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。 四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器…

四元数如何用于 3D 旋转(代替欧拉角和旋转矩阵)

在三维空间中,物体的旋转可以用 欧拉角、旋转矩阵 或 四元数 来表示。
四元数相比于欧拉角和旋转矩阵有 计算更高效、避免万向锁、存储占用少 等优点,因此广泛用于 游戏开发、机器人学、计算机图形学和航空航天 等领域。

四元数的定义

一个四元数 q 由四个实数组成:
q = w + x i + y j + z k q=w+xi+yj+zk q=w+xi+yj+zk
其中:w,x,y,z 是实数;i,j,k 是虚单位,满足特定的乘法规则

旋转的基本表示方式

方式表示方法优缺点
欧拉角(Euler Angles)(α,β,γ) 对应绕 X, Y, Z 轴的旋转优点:直观易理解,和现实生活的旋转方式类似。缺点:存在万向锁(Gimbal Lock)问题,计算复杂。
旋转矩阵(Rotation Matrix)3×3 矩阵优点:适用于线性代数计算,方便复合旋转。缺点:需要存储 9 个值,数值误差累积会导致非正交性。
四元数(Quaternion)q=w+xi+yj+zk优点:旋转计算简单,存储更紧凑(只需要 4 个数),避免万向锁,插值平滑。缺点:不直观,不容易手动调整。

旋转四元数的定义

一个 旋转四元数q 表示围绕单位向量 (x,y,z) 旋转角度 θ 的旋转:
q = cos ⁡ θ 2 + sin ⁡ θ 2 ( x i + y j + z k ) q=\cos\frac{\theta}{2}+\sin\frac{\theta}{2}(x\mathbf{i}+y\mathbf{j}+z\mathbf{k}) q=cos2θ+sin2θ(xi+yj+zk)
或写成向量形式:
q = ( cos ⁡ θ 2 , x sin ⁡ θ 2 , y sin ⁡ θ 2 , z sin ⁡ θ 2 ) q=\left(\cos\frac{\theta}{2},x\sin\frac{\theta}{2},y\sin\frac{\theta}{2},z\sin\frac{\theta}{2}\right) q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)
其中:θ 是旋转角度
(x,y,z) 是旋转轴(必须是单位向量)
(xi,yj,zk) 是四元数的虚部,表示旋转方向
注意:旋转四元数必须是单位四元数,即满足:
∣ q ∣ = w 2 + x 2 + y 2 + z 2 = 1 |q|=\sqrt{w^2+x^2+y^2+z^2}=1 q=w2+x2+y2+z2 =1

使用四元数进行 3D 旋转

假设有一个点 v = ( v x , v y , v z ) \mathbf{v}=(v_x,v_y,v_z) v=(vx,vy,vz),我们想用四元数 q 旋转它。方法如下:

  • 将点转换为纯四元数(虚部存储向量坐标)
    p = ( 0 , v x , v y , v z ) p=(0,v_x,v_y,v_z) p=(0,vx,vy,vz)
  • 计算旋转后的点
    p ′ = q p q − 1 p^{\prime}=qpq^{-1} p=qpq1
    其中: q − 1 q^{-1} q1是四元数的逆(单位四元数的逆就是它的共轭)
    旋转后的点 p ′ p^{\prime} p也是一个纯四元数,其中的虚部给出新坐标。
  • 单位四元数的逆
    q − 1 = q ∗ = ( cos ⁡ θ 2 , − x sin ⁡ θ 2 , − y sin ⁡ θ 2 , − z sin ⁡ θ 2 ) q^{-1}=q^*=(\cos\frac{\theta}{2},-x\sin\frac{\theta}{2},-y\sin\frac{\theta}{2},-z\sin\frac{\theta}{2}) q1=q=(cos2θ,xsin2θ,ysin2θ,zsin2θ)

例程(C语言)

旋转 (1, 0, 0) 向量 绕 Y 轴旋转 90°。
计算后,结果应该接近 (0, 0, -1),即 X 轴向量变成 Z 轴负方向。

#include <stdio.h>
#include <math.h>// 定义四元数结构体
typedef struct {double w, x, y, z;
} Quaternion;// 定义向量结构体
typedef struct {double x, y, z;
} Vector3;// 归一化四元数(单位四元数)
Quaternion normalize(Quaternion q) {double magnitude = sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z);q.w /= magnitude;q.x /= magnitude;q.y /= magnitude;q.z /= magnitude;return q;
}// 计算四元数的共轭
Quaternion conjugate(Quaternion q) {Quaternion conj = {q.w, -q.x, -q.y, -q.z};return conj;
}// 计算两个四元数的乘法
Quaternion multiply(Quaternion q1, Quaternion q2) {Quaternion result;result.w = q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z;result.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y;result.y = q1.w * q2.y - q1.x * q2.z + q1.y * q2.w + q1.z * q2.x;result.z = q1.w * q2.z + q1.x * q2.y - q1.y * q2.x + q1.z * q2.w;return result;
}// 旋转向量 v 使用四元数 q
Vector3 rotate_vector(Vector3 v, Quaternion q) {Quaternion p = {0, v.x, v.y, v.z}; // 将向量转换为纯四元数Quaternion q_conj = conjugate(q);  // 计算四元数共轭// 计算旋转后的四元数 p' = q * p * q^(-1)Quaternion temp = multiply(q, p);Quaternion rotated = multiply(temp, q_conj);// 结果的虚部即为旋转后的向量Vector3 result = {rotated.x, rotated.y, rotated.z};return result;
}// 生成绕 (ux, uy, uz) 轴旋转 theta 角度的四元数
Quaternion from_axis_angle(double ux, double uy, double uz, double theta) {Quaternion q;double half_theta = theta * M_PI / 360.0; // 角度转弧度并除以 2double sin_half_theta = sin(half_theta);q.w = cos(half_theta);q.x = ux * sin_half_theta;q.y = uy * sin_half_theta;q.z = uz * sin_half_theta;return normalize(q);
}int main() {// 定义一个向量 (1, 0, 0)Vector3 v = {1, 0, 0};// 绕 Y 轴旋转 90 度的四元数Quaternion q = from_axis_angle(0, 1, 0, 90);// 旋转向量Vector3 rotated_v = rotate_vector(v, q);// 输出旋转后的结果printf("旋转后向量: (%f, %f, %f)\n", rotated_v.x, rotated_v.y, rotated_v.z);return 0;
}

代码解析

  1. 定义数据结构
    Quaternion 结构体存储四元数(w, x, y, z)
    Vector3 结构体存储 3D 向量(x, y, z)
  2. 归一化四元数
    旋转四元数必须是 单位四元数,所以 normalize() 函数保证四元数的模长为 1。
  3. 计算四元数共轭
    conjugate() 计算 (对于单位四元数,逆就是共轭)。
  4. 四元数乘法
    multiply() 执行两个四元数的乘法,用于计算旋转变换。
  5. 向量旋转
    rotate_vector() 采用公式 计算旋转后的向量。
  6. 从轴-角度转换为四元数
    from_axis_angle() 计算沿任意轴旋转 theta 角度的旋转四元数。

如预期,原来的 (1, 0, 0) 经过 绕 Y 轴旋转 90° 后变成了 (0, 0, -1)

http://www.tj-hxxt.cn/news/115211.html

相关文章:

  • 做外汇关注的网站合肥头条今日头条新闻最新消息
  • 一个网站的二维码怎么做网络营销的公司有哪些
  • 东莞网站制作支付通道杭州seo中心
  • seo网站模板磁力吧最佳搜索引擎
  • .net做网站用mvc国产最好的a级suv
  • 网站先用香港空间以后备案吗前端培训哪个机构靠谱
  • 趣php网站开发实战代码东营优化路网
  • 网站管理后台如果在代理商那里接手会不会停掉外贸网络推广公司
  • 银川网站制作市场营销方案范文
  • 商贸公司寮步网站建设2024年疫情还会封控吗
  • 云南建设学校网站搜索引擎优化网站排名
  • dedecms导入网站模板百度怎么打广告
  • 怎么做自己的音乐网站今天的新闻发布会
  • 厦门网站建设哪家专业怎么找推广渠道
  • 网站做seo屏蔽搜索app推广一手单平台
  • 电子商务网站建设过程广州 关于进一步优化
  • 制作公司网站源代码怎么弄seo推广人员
  • wordpress 内存占用seo工资待遇怎么样
  • 现在lol谁做教学视频网站软文广告代理平台
  • html5好的网站模板西安seo顾问培训
  • 用nas做网站服务器如何做seo整站优化
  • 南宁网络推广平台有哪些潍坊网站建设seo
  • 西宁做网站治愈君博i免费网站统计工具
  • 嵌入式软件开发环境有哪些seo整站优化推广
  • 搜索引擎营销原理是什么短视频seo排名加盟
  • 黑人与白人做爰网站一键生成网站
  • 网站建设 电子商务网站开发网站优化效果
  • wordpress 导入xmlaso优化榜单
  • 淄博比较好的网站建设公司外链发布平台大全
  • 备案期间 需要关闭网站自己开网站怎么开