当前位置: 首页 > news >正文

网站 app网站优化的方法与技巧

网站 app,网站优化的方法与技巧,大数据比赛网站建设,0基础学做网站往期 【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_0:介绍了题目和背景【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_1:题目输入的格式说明,选择了邻接表…

往期

  • 【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_0:介绍了题目和背景
  • 【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_1:题目输入的格式说明,选择了邻接表来表示图
  • 【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_2:介绍了邻接表,题目输出的格式说明
  • 【用deepseek和chatgpt做算法竞赛】——华为算法精英实战营第十九期-Minimum Cost Trees_3:期主要写一个初代程序,能完整一些简单的例子
  • 【用deepseek和chatgpt做算法竞赛】——ChatGPT还是不行呀 -Minimum Cost Trees_4:介绍了评分规则,让GPT输出了一个看着正确实际不行的代码

这一期,我选择用伪代码的方式与GPT沟通,让GPT做军师和程序员,一定要写一个有分的程序呀

0 基础程序

下面这个程序就是根据题目要求写的一个输入数据读取的程序

import sys
import heapq
from collections import defaultdictdef read_graph_from_file(file_path):""" 从文件读取图数据并解析 """with open(file_path, 'r') as f:lines = f.read().strip().split("\n")n = int(lines[0].strip())  # 节点数s = int(lines[1].strip())  # 源点k = int(lines[2].strip())  # 目标节点数terminals = list(map(int, lines[3].strip().split()))  # 目标节点列表D = int(lines[4].strip())  # 延迟约束m = int(lines[5].strip())  # 边数graph = defaultdict(list)for i in range(6, 6 + m):a, b, c, d = map(int, lines[i].strip().split())graph[a].append((b, c, d))  # 存储 a -> b 的边graph[b].append((a, c, d))  # 存储 b -> a 的边(无向图)return n, s, terminals, D, graphdef process_and_output(file_path):graph_data = read_graph_from_file(file_path)if not graph_data:returnif __name__ == "__main__":# 输入文件路径file_path = "../sample-cases/01"  # 请根据实际文件路径修改process_and_output(file_path)

1 ChatGPT思路

ChatGPT给的思路流程

  • 初始化图数据
  • 构建主树
  • 构建冗余树
  • 验证冗余树
  • 输出
    这个其实就有问题了,因为先构建出主树,为了找到一颗最好的主树,就很有可能把冗余树堵死了

2 从简单的开始

我们先尝试只找一棵树,即只要拿前两个条件的分

  • 单棵树: 如果是单棵树,得 5 分。
  • 满足延迟约束的单棵树: 如果树满足延迟约束,则得 10 分。
    很尴尬的事情发生了,ChatGPT崩了,接下的事情让deepseek来吧,我用的是浙江大学的满血版DeepSeek的“浙大先生”
    在这里插入图片描述
    实际使用还是有一些问题,就是输入框很小呀一次只能能看到一行呀,看不到我完整的输入,修改起来比较麻烦,但是是免费的就很棒,现在是2025年2月21日,希望后面能改进,感谢浙大!
    在这里插入图片描述
deepseek给出的代码如下

满足了简单的要求能找到一颗树了,且拿到了分

import sys
import heapq
from collections import defaultdictdef read_graph_from_file():""" 从标准输入读取图数据并解析 """lines = sys.stdin.read().strip().split("\n")n = int(lines[0].strip())  # 节点数s = int(lines[1].strip())  # 源点k = int(lines[2].strip())  # 目标节点数terminals = list(map(int, lines[3].strip().split()))  # 目标节点列表D = int(lines[4].strip())  # 延迟约束m = int(lines[5].strip())  # 边数graph = defaultdict(list)for i in range(6, 6 + m):a, b, c, d = map(int, lines[i].strip().split())graph[a].append((b, c, d))  # 存储 a -> b 的边graph[b].append((a, c, d))  # 存储 b -> a 的边(无向图)return n, s, terminals, D, graphdef dijkstra(graph, start, delay_constraint):""" 使用 Dijkstra 算法找到从 start 到所有节点的最短路径 """distances = {node: float('inf') for node in graph}distances[start] = 0heap = [(0, start)]path = {}while heap:current_distance, current_node = heapq.heappop(heap)if current_distance > delay_constraint:continuefor neighbor, cost, delay in graph[current_node]:distance = current_distance + delayif distance < distances[neighbor]:distances[neighbor] = distanceheapq.heappush(heap, (distance, neighbor))path[neighbor] = current_nodereturn pathdef build_tree(path, terminals):""" 根据路径构建树 """tree_edges = set()for terminal in terminals:current = terminalwhile current in path:parent = path[current]tree_edges.add((parent, current))current = parentreturn tree_edgesdef process_and_output():n, s, terminals, D, graph = read_graph_from_file()# 使用 Dijkstra 算法找到从 s 到所有节点的路径path = dijkstra(graph, s, D)# 构建树tree_edges = build_tree(path, terminals)# 检查是否满足延迟约束def is_delay_satisfied(tree_edges, graph, s, terminals, D):distances = {node: float('inf') for node in graph}distances[s] = 0heap = [(0, s)]while heap:current_distance, current_node = heapq.heappop(heap)for neighbor, cost, delay in graph[current_node]:if (current_node, neighbor) in tree_edges:distance = current_distance + delayif distance < distances[neighbor]:distances[neighbor] = distanceheapq.heappush(heap, (distance, neighbor))for terminal in terminals:if distances[terminal] > D:return Falsereturn Truedelay_satisfied = is_delay_satisfied(tree_edges, graph, s, terminals, D)# 输出结果print(1)  # 只输出一棵树print(len(tree_edges))  # 树中的边数for edge in tree_edges:print(edge[0], edge[1])# # 判断得分# if delay_satisfied:#     print("满足延迟约束的单棵树,得 10 分。")# else:#     print("单棵树,得 5 分。")if __name__ == "__main__":process_and_output()

恭喜恭喜有分了,虽然垫底,但迈出了第一步,祝贺;
在这里插入图片描述

目前得分是452893,下一期争取拿更高

http://www.tj-hxxt.cn/news/114656.html

相关文章:

  • 永康做企业网站的公司seo网络培训
  • 免费的企业黄页网站永久免费企业网络营销策划
  • seo做的好的网站有哪些网页设计代码案例
  • 电子商务网站保密协议百度热度指数排行
  • wap网站一键生成app网络营销管理
  • 专做动漫解说的网站网页设计代码
  • 什么是网络公司最好的优化公司
  • 做创意ppt网站百度关键词优化点击 教程
  • 网站没有robots.txt兰州seo优化
  • 企业建设网站公司有哪些怎么看百度关键词的搜索量
  • wordpress设置登陆口合肥百度seo代理
  • 营销型网站建站系统网站运营怎么做
  • 变更网站怎么做南昌seo服务
  • 网站委托书找谁做seo关键词排名系统
  • 玉林做绿化苗木网站的是哪个单位网络营销策划书模板
  • 武汉专业做网站开发的公司企业seo的措施有哪些
  • wordpress网站熊掌粉丝关注澳门seo关键词排名
  • 微网站开发+在线商城百度网站大全旧版
  • 物流企业网站模板下载备案域名出售平台
  • 宁波seo网站排名优化关键词工具网站
  • 中信建设有限责任公司湖北分公司天津百度seo推广
  • 西部数码网站助手4.0长沙网站定制
  • 青海省建设厅网站手机百度网址大全首页
  • 创办网站公司网上销售方法
  • 服务器做网站FTP必要性大吗营销推广方案设计
  • 域名查询ip地址138陕西seo排名
  • 最新网页制作资料惠州seo推广优化
  • 成都微网站网络营销的营销方式是什么
  • 织梦网站地图插件utf-8网址导航浏览器下载
  • 网站源码安装步骤玉林seo