当前位置: 首页 > news >正文

建站公司费用情况营业推广经典案例

建站公司费用情况,营业推广经典案例,网站开发 验收移交,wordpress调用当前分类名图像的基础操作 获取图像的像素值并修改获取图像的属性信息图像的ROI区域图像通道的拆分及合并图像扩边填充图像上的算术运算图像的加法图像的混合图像的位运算 获取图像的像素值并修改 首先读入一副图像: import numpy as np import cv2# 1.获取并修改像素值 # 读…

图像的基础操作

  • 获取图像的像素值并修改
  • 获取图像的属性信息
  • 图像的ROI区域
  • 图像通道的拆分及合并
  • 图像扩边填充
  • 图像上的算术运算
    • 图像的加法
    • 图像的混合
    • 图像的位运算

获取图像的像素值并修改

首先读入一副图像:

import numpy as np
import cv2# 1.获取并修改像素值
# 读取一副图像, 根据像素的行和列的坐标获取它的像素值, 对于RGB图像而言, 返回RGB的值, 对于灰度图则返回灰度值img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_COLOR)
px = img[200, 100]
print(px)	# [24 18 11]blue = img[200, 100, 0]
print(blue)  # 24# 修改101行,101列的像素值
img[101, 101] = [255,255,255]
print(img[101,101])cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

获取像素值及修改的更好方法:

import numpy as np
import cv2# numpy是经过优化了的进行快速矩阵运算的包, 所以不推荐逐个获取像素值并修改能矩阵运算就不要用循环。
# 例如前5行的后3列, 用numpy的array.item()和array.itemset()会更好。 但是返回是标量, 如果想获得所有RGB
# 的值, 需要使用array.item()分割他们。img = cv2.imread('./resource/image/1.jpg')
print(img.item(10, 10, 2))img.itemset((10, 10, 2), 100)
print(img.item(10, 10, 2))

获取图像的属性信息

img = cv2.imread(‘./resource/image/1.jpg’, cv2.IMREAD_COLOR)
img.shape: 图像的形状(包括行数,列数,通道数的元组)
img.size : 图像的像素数目
img.dtype :图像的数据类型

import numpy as np
import cv2# 图像属性包括: 行, 列, 通道, 图像数据类型, 像素数目等
# 如果图像是灰度图, 返回值仅有行数和列数, 所以通过检查返回值可以判断是灰度图还是彩色图
img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_COLOR)
print(img.shape)  #  彩色图(1080, 1920, 3) img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_GRAYSCALE)
print(img.shape)  # 灰度图(1080, 1920)# img.size 获取图像像素数
img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_COLOR)
print(img.size) # 6220800
print(img.dtype)# uint8img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_GRAYSCALE)
print(img.size) # 2073600
print(img.dtype)# uint8

图像的ROI区域

ROI(regionofinterest),感兴趣区域。机器视觉、图像处理中,从被处理的图像以方框、圆、椭圆、不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI。在Halcon、OpenCV、Matlab等机器视觉软件上常用到各种算子(Operator)和函数来求得感兴趣区域ROI,并进行图像的下一步处理。

import numpy as np
import cv2img = cv2.imread('./resource/image/4.jpg')
ball = img[20:70,30:80]     # 获取一块图像
img[40:90,50:100] = ball    # 指定位置绘制一块图像cv2.imshow('image', img)
cv2.waitKey(0)&0xFF
cv2.destroyAllWindows()

图像通道的拆分及合并

有时需要对 BGR 三个通道分别进行操作。这时就需要把 BGR 拆
分成单个通道。有时需要把独立通道的图片合并成一个 BGR 图像。
注:cv2.split()是比较耗时的操作,尽量使用numpy索引操作。

import numpy as np
import cv2img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_COLOR)
# split函数,拆分图像数据
(b,g,r) = cv2.split(img) 
img2 = cv2.merge([b,g,r]) # 合并数据
print(r.shape)
print(g.shape)
print(b.shape)# Numpy索引拆分图像数据
img = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_COLOR)
b = img[:,:,0] # 拆分b通道
g = img[:,:,1] # 拆分g通道
r = img[:,:,2] # 拆分r通道# 通道像素赋值
img[:,:,2]= 0 #
print(r.shape)
print(g.shape)
print(b.shape)img3 = cv2.merge([b,g,r])cv2.imshow('img', img)
cv2.imshow('img2', img2)
cv2.imshow('img3', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像扩边填充

如果想在图像周围创建一个边,就像相框一样,你可以使用cv2.copyMakeBorder()函数。这经常在卷积运算或 0 填充时被用到。这个函数包括如下参数:

  • src 输入图像

  • top, bottom, left, right 对应边界的像素数目。

  • borderType 要添加那种类型的边界,类型如下:

    1. cv2.BORDER_CONSTANT 添加有颜色的常数值边界,还需要
      下一个参数( value)。
    2. cv2.BORDER_REFLECT 边界元素的镜像。比如: fedcba|abcdefgh|hgfedcb
    3. cv2.BORDER_REFLECT_101 or cv2.BORDER_DEFAULT
      跟上面一样,但稍作改动。例如: gfedcb|abcdefgh|gfedcba
    4. cv2.BORDER_REPLICATE 重复最后一个元素。例如: aaaaaa|
      abcdefgh|hhhhhhh
    5. cv2.BORDER_WRAP 不知道怎么说了, 就像这样: cdefgh|
      abcdefgh|abcdefg
  • value 边界颜色,如果边界的类型是 cv2.BORDER_CONSTANT

import numpy as np
import cv2
from matplotlib import pyplot as plt# 边界填充
img = cv2.imread('./resource/image/opencv-logo2.png')# BORDER_REPLICATE:复制法,复制最边缘的像素
# BORDER_REFLECT:反射法
# BORDER_REFLECT101:反射法
# BORDER_WRAP:外包装
# BORDER_CONSTANT:常量法blue = [255, 0, 0]
replicate = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REPLICATE)   
reflect = cv2.copyMakeBorder(img, 10, 10, 10,10, cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_REFLECT101)
wrap = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, 10, 10, 10, 10, cv2.BORDER_CONSTANT, value=blue)plt.subplot(231), plt.imshow(img, 'gray'), plt.title('original'), plt.xticks([]),plt.yticks([])
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('replicate'), plt.xticks([]),plt.yticks([])
plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('reflect'), plt.xticks([]),plt.yticks([])
plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('reflect101'), plt.xticks([]),plt.yticks([])
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('warp'), plt.xticks([]),plt.yticks([])
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('constant'), plt.xticks([]),plt.yticks([])
plt.show()

在这里插入图片描述

图像上的算术运算

图像上的算术运算有:加法,减法,位运算等
涉及的函数有:cv2.add(), cv2().addWeighted()等

图像的加法

可以使用函数 cv2.add() 将两幅图像进行加法运算,当然也可以直接使
用 numpy, res=img1+img2。两幅图像的大小,类型必须一致,或者第二个
图像可以是一个简单的标量值。

注意: OpenCV 中的加法与 Numpy 的加法是有所不同的。 OpenCV 的加法
是一种饱和操作,而 Numpy 的加法是一种模操作。如下例子所示:

x = np.uint8([250])
y = np.uint8([10])
print(cv2.add(x, y))  #  250 + 10 = 260 > 255, uint8 最大值255
# 输出结果[[255]]print(x + y) # 250_10=260%255=4
# 输出结果[[4]] 

图像的混合

其实也是加法运算,但不同的是两幅图像的权重不同,给人一种混合或透明的感觉。图像混合计算公式如下:
g ( x ) = ( 1 − α ) f 0 ( x ) + α f 1 ( x ) g(x) = (1-\alpha)f_0(x) + \alpha f_1(x) g(x)=(1α)f0(x)+αf1(x)
通过修改 α \alpha α的值(0-1),可以实现不同权重的混合。
d s t = α ∗ i m g 1 + β ∗ i m g 2 + γ dst = \alpha*img1 + \beta*img2+\gamma dst=αimg1+βimg2+γ
这里 γ \gamma γ的值为0。

dst2 = cv2.addWeighted(img1, 0.3, img2, 0.7, 0)

import numpy as np
import cv2
from matplotlib import pyplot as pltimg1 = cv2.imread('./resource/image/1.jpg', cv2.IMREAD_COLOR)
img2 = cv2.imread('./resource/image/2.jpg', cv2.IMREAD_COLOR)dst1 = img1 + img2
dst2 = cv2.addWeighted(img1, 0.3, img2, 0.7, 0)plt.subplot(231), plt.imshow(img1), plt.title('img1')
plt.subplot(232), plt.imshow(img2), plt.title('img2')
plt.subplot(233), plt.imshow(dst1), plt.title('img1+img2')
plt.subplot(234), plt.imshow(dst2), plt.title('addWeighted(img1+img2)')
plt.show()

图像的位运算

图像的按位操作有: AND, OR, NOT, XOR 等。当我们提取图像的一部分,选择非矩形 ROI 时这些操作会很有用。下面的例子就是教给我们如何改变一幅图的特定区域。

  • cv2.bitwise_and() 与
  • cv2.bitwise_or() 或
  • cv2.bitwise_not() 非
  • cv2.bitwise_xor() 异或
import numpy as np
import cv2img1 = cv2.imread('./resource/image/1.jpg')
img2 = cv2.imread('./resource/image/opencv-logo.png')# 放置logo在左上角
rows, cols, channels = img2.shape
roi = img1[0:rows,0:cols]img2gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(img2gray, 175, 255, cv2.THRESH_BINARY) # 二值化处理
mask_inv = cv2.bitwise_not(mask)img1_bg = cv2.bitwise_and(roi, roi, mask=mask)
img2_fg = cv2.bitwise_and(img2, img2, mask=mask_inv)dst = cv2.add(img1_bg, img2_fg)
img1[0:rows, 0:cols] = dstcv2.imshow('logo', img2)    
cv2.imshow('gray', img2gray)
cv2.imshow('mask', mask)       
cv2.imshow('mask_inv', mask_inv)
cv2.imshow('bg', img1_bg)
cv2.imshow('fg', img2_fg)
cv2.imshow('res', img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

http://www.tj-hxxt.cn/news/114385.html

相关文章:

  • 网站建设和推广seo关键词排名点击工具
  • 自适应型网站建设推荐关键词seo公司推荐
  • 高端的家居行业网站开发长沙网站托管seo优化公司
  • 做饲料推广哪个网站好企业seo关键字优化
  • 网站建设 上百度搜索推广怎么做
  • 青岛网站建设网站制作谷歌浏览器下载手机版官网
  • 淘宝网站c 设计怎么做的长沙优化科技
  • 电子商务网站安全性能主要包括企业网络推广
  • 做彩票网站需要代购自媒体平台大全
  • 广州越秀区有疫情吗seo网站优化培
  • 企业网站特点网站建设的系统流程图
  • 做网站搜索结果的代码百度知道app官方下载
  • 高校档案网站建设的目的是什么网络外贸推广
  • 商务网站建设与规划百度统计app
  • 网站开发网站页面2022年度最火关键词
  • 在线做章网站免费域名 网站
  • 网站里网格怎么做深圳整合营销
  • 东阿企业做网站推广海南百度总代理
  • 自己可以做开奖网站吗河北seo基础知识
  • flash型网站网址优化网站平台
  • 珠海市工程造价信息网seo排名影响因素主要有
  • 什么叫网站建设方案书做好网络推广的技巧
  • 哪个网站卖做阳具好点汽车营销策划方案ppt
  • 灵宝网站制作工作室制作链接的小程序
  • 做网站+广告费+步骤百度贴吧网页版入口
  • 做交友网站需要什么免费发帖论坛大全
  • 网站搭建原则html网页制作用什么软件
  • 优秀flash网站设计个人怎么在百度上做推广
  • 网站建设论文 php网络推广费用
  • 宁夏网站建设百度seo快速排名优化服务