当前位置: 首页 > news >正文

农业电商网站建设pp百度推广开户价格

农业电商网站建设pp,百度推广开户价格,优化的含义是什么,济南疫情最新通知学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html 概念 Pytorch Tensor在概念上和Numpy的array一样是一个nnn维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(…

学习自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

概念

Pytorch Tensor在概念上和Numpy的array一样是一个nnn维向量的。不过Tensor可以在GPU中进行计算,且可以跟踪计算图(computational graph)和梯度(gradients)。

手动梯度下降拟合函数

我们用三次函数去拟合任意函数。
y^=a+bx+cx2+dx3\hat{y}=a+bx+cx^2+dx^3y^=a+bx+cx2+dx3
定义损失函数L=∑(y−y^)2L=\sum(y-\hat{y})^2L=(yy^)2
那么梯度为:
L:2∗∑(y−y^)L:2*\sum(y-\hat{y})L:2(yy^)
a:2∗∑(y−y^)a:2*\sum(y-\hat{y})a:2(yy^)
b:2∗x∗∑(y−y^)b:2*x*\sum(y-\hat{y})b:2x(yy^)
c:2∗x2∗∑(y−y^)c:2*x^2*\sum(y-\hat{y})c:2x2(yy^)
d:2∗x3∗∑(y−y^)d:2*x^3*\sum(y-\hat{y})d:2x3(yy^)

代码

import torch
import mathdtype = torch.float
device = torch.device("cuda:0") # Run on GPU# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device,dtype=dtype)
y = torch.sin(x)# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)learning_rate = 1e-6
for t in range(2000):# Forward pass: compute predicted yy_pred = a + b * x + c * x **2 + d *x ** 3# Compute and print lossloss = (y_pred - y).pow(2).sum().item()if t % 100 == 99:print(t, loss)# Backprop to compute gradients of a, b, c, d with respect to lossgrad_y_pred = 2.0 * (y_pred - y)grad_a = grad_y_pred.sum()grad_b = (grad_y_pred * x).sum()grad_c = (grad_y_pred * x ** 2).sum()grad_d = (grad_y_pred * x ** 3).sum()# Update weights using gradient descenta -= learning_rate * grad_ab -= learning_rate * grad_bc -= learning_rate * grad_cd -= learning_rate * grad_dprint(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')

自动梯度下降拟合函数

通过PyTorch: nn构建神经网络,如果我们需要一个三次函数来拟合,那么我们就需要一个隐藏层为1层,节点为3个的神经网络。
y^=∑i=13(wixi+bi)\hat{y}=\sum_{i=1}^3(w_ix^i+b_i)y^=i=13(wixi+bi)

model = torch.nn.Sequential(torch.nn.Linear(3, 1), #三个节点torch.nn.Flatten(0, 1) # 把三个节点的结果加起来
)

由于我们的神经网络第一层有三个输入(x,x2,x3x,x^2,x^3x,x2,x3),所以我们需要把数据预处理一下

x = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)

然后我们预测输出就可以直接调用model了

y_pred = model(xx) # y_pred也是一个tensor

损失函数

loss_fn = torch.nn.MSELoss(reduction='sum') # 定义,使用均方误差
loss = loss_fn(y_pred, y) # 计算均方误差
model.zero_grad() # 先把原先模型的梯度信息清零
loss.backward() # 计算反向传播的梯度

完整代码

import torch
import mathx = torch.linspace(-math.pi, math.pi, 2000)
y = torch.sin(x)p = torch.tensor([1, 2, 3])
xx = x.unsqueeze(-1).pow(p)model = torch.nn.Sequential(torch.nn.Linear(3, 1),torch.nn.Flatten(0, 1)
)loss_fn = torch.nn.MSELoss(reduction='sum')learning_rate = 1e-6
for t in range(2000):y_pred = model(xx)loss = loss_fn(y_pred, y)if t % 100 == 99:print(t, loss.item())model.zero_grad()loss.backward()with torch.no_grad(): # 进行梯度下降for param in model.parameters():param -= learning_rate * param.gradlinear_layer = model[0]
print(f'Result: y = {linear_layer.bias.item()} + {linear_layer.weight[:, 0].item()} x + {linear_layer.weight[:, 1].item()} x^2 + {linear_layer.weight[:, 2].item()} x^3')
http://www.tj-hxxt.cn/news/112668.html

相关文章:

  • 如何自已建网站推广哪个平台好
  • 网站关键词优化方法百度产品大全首页
  • 35互联网站建设怎么样今日头条军事新闻
  • 网页设计创意书seo排名资源
  • 砀山做网站东莞网络营销优化
  • 政府门户网站 建设原画培训机构哪里好
  • 石家庄建站系统广州百度seo优化排名
  • 吉安网站制作公司优化排名推广教程网站
  • 国外男女直接做的视频网站bt种子磁力搜索
  • 网站甲假发头套真头发做的假发网络流量分析工具
  • wordpress要懂php搜索引擎优化的重要性
  • 做网站实训目的和意义域名解析ip138在线查询
  • 服务器绑定网站打不开餐饮营销方案100例
  • 跨境建站服务公司保定网站建设公司哪家好
  • 新建网站费用2022年大事热点新闻
  • 手机网站建设流程如何优化推广网站
  • 如何用wordpress做视频网站独立站seo建站系统
  • 凡诺网站下载seo优化的方法有哪些
  • 网站被spider重复抓取人民网舆情数据中心官网
  • 电商网站开发论文公司做网页要多少钱
  • 网站规划与网页设计seo基本步骤
  • 做网站视频如何制作个人网站
  • 厦门市建设局网站已备案域名交易平台
  • 手机如何复制网站模板广州网站建设技术外包
  • 网站系统制作教程做百度推广需要什么条件
  • 企业做国际站哪个网站好bt磁力种子搜索引擎
  • 网站公司维护玉林seo
  • 如何在后台做网站流程网络营销的三大核心
  • 买的网站可做360广告联盟吗代写文章平台
  • wordpress pagenavi settings自己怎么优化我网站关键词