当前位置: 首页 > news >正文

重庆网站建设letide合肥百度推广排名优化

重庆网站建设letide,合肥百度推广排名优化,一流的盐城网站开发,.net网站开发实站✨个人主页:bit me ✨当前专栏:算法基础 🔥专栏简介:该专栏主要更新一些基础算法题,有参加蓝桥杯等算法题竞赛或者正在刷题的铁汁们可以关注一下,互相监督打卡学习 🌹 🌹 &#x1f3…

✨个人主页:bit me
✨当前专栏:算法基础
🔥专栏简介:该专栏主要更新一些基础算法题,有参加蓝桥杯等算法题竞赛或者正在刷题的铁汁们可以关注一下,互相监督打卡学习 🌹 🌹 🌹

前 缀 和 与 差 分

  • 🎄一. 前缀和(一维)
  • 🌲二. 子矩阵的和(二维)
  • 🌳三. 差分
  • 🌴四. 差分矩阵
  • 🎋五. 总结

🎄一. 前缀和(一维)

输入一个长度为 n 的整数序列。
 
接下来再输入 m 个询问,每个询问输入一对 l,r。
 
对于每个询问,输出原序列中从第 l 个数到第 r 个数的和。

输入格式:

第一行包含两个整数 n 和 m。
 
第二行包含 n 个整数,表示整数数列。
 
接下来 m 行,每行包含两个整数 l 和 r,表示一个询问的区间范围。

输出格式:

共 m 行,每行输出一个询问的结果。

数据范围:

1 ≤ l ≤ r ≤n,
 
1 ≤ n,m ≤ 100000,
 
−1000 ≤ 数列中元素的值 ≤ 1000

输入样例:

5 3
2 1 3 6 4
1 2
1 3
2 4

输出样例:

3
6
10

思路:

  • 数组 a[1] + a[2] + … + a[i],对于某一个区间[l,r]的和就是s[r]-s[l-1]
  • 考虑边界统一问题可以让 s[0] = 0 统一格式,但是我们题解可以让边界从角标 1 开始,有效避免让 s[0] = 0 来单独处理

题解:

  1. 把数都遍历到数组里
Scanner scan  = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
int[] a = new int[n+1];
int[] s = new int[n+1];
for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();
}
  1. 前 n 项数组和
for(int i = 1 ; i <= n ; i ++){s[i] = s[i-1] + a[i];
}
  1. 根据规律某一个区间[l,r]的和就是s[r]-s[l-1]
while(m-- > 0){int l = scan.nextInt();int r = scan.nextInt();System.out.println(s[r] - s[l-1]);
}

 
附上总的代码

import java.util.Scanner;
public static void main(String[] args){Scanner scan  = new Scanner(System.in);int n = scan.nextInt();int m = scan.nextInt();int[] a = new int[n+1];int[] s = new int[n+1];for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++){s[i] = s[i-1] + a[i];}while(m-- > 0){int l = scan.nextInt();int r = scan.nextInt();System.out.println(s[r] - s[l-1]);}
}

 

🌲二. 子矩阵的和(二维)

输入一个 n 行 m 列的整数矩阵,再输入 q 个询问,每个询问包含四个整数x1,y1,x2,y2,表示一个子矩阵的左上角坐标和右下角坐标。
 
对于每个询问输出子矩阵中所有数的和。

输入格式:

第一行包含三个整数 n,m,q。
 
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
 
接下来 q 行,每行包含四个整数 x1,y1,x2,y2,表示一组询问。

输出格式:

共 q 行,每行输出一个询问的结果。

数据范围:

1 ≤ n,m ≤1000,
 
1 ≤ q ≤ 200000,
 
1 ≤ x1 ≤ x2 ≤n,
 
1 ≤ y1 ≤ y2 ≤m,
 
−1000 ≤ 矩阵内元素的值 ≤ 1000

输入样例:

3 4 3
 
1 7 2 4
 
3 6 2 8
 
2 1 2 3
 
1 1 2 2
 
2 1 3 4
 
1 3 3 4

输出样例:

17
 
27
 
21

思路:

此处视图就不画了,我们要先了解清楚计算的公式

  • s[i,j] = s[i - 1,j] + s[i,j - 1] - s[i - 1,j - 1] + a[i,j]
  • (x1, y1),(x2, y2) 这一矩阵中所有数的和 = s[x2,y2] - s[x2,y1 - 1] - s[x1 - 1,y2] + s[x1 - 1,y1 - 1]

题解:

  1. 继续按照上题一样,角标都从 1 开始,因此数组都要扩容 + 1
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
int q = scan.nextInt();
int[][] a = new int[n+1][m+1];
int[][] s = new int[n+1][m+1];
for(int i = 1 ; i <= n  ; i ++ ){for(int j = 1 ;j <= m ; j ++ ){a[i][j] = scan.nextInt();}
}
  1. 按照思路计算二维数组每一块从 (1,1) 到 (i,j) 的大小,得出 s[i,j] 的通式
for(int i = 1 ; i <= n  ; i ++ ){for(int j = 1 ;j <= m ; j ++ ){s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];}
}
  1. 通式计算区域相加减的出的面积
while(q-->0){int x1 = scan.nextInt();int y1 = scan.nextInt();int x2 = scan.nextInt();int y2 = scan.nextInt();System.out.println(s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1]);
}

 
附上总的代码

import java.util.Scanner;
public static void main(String[] args){Scanner scan = new Scanner(System.in);int n = scan.nextInt();int m = scan.nextInt();int q = scan.nextInt();int[][] a = new int[n+1][m+1];int[][] s = new int[n+1][m+1];for(int i = 1 ; i <= n  ; i ++ ){for(int j = 1 ;j <= m ; j ++ ){a[i][j] = scan.nextInt();}}for(int i = 1 ; i <= n  ; i ++ ){for(int j = 1 ;j <= m ; j ++ ){s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];}}while(q-->0){int x1 = scan.nextInt();int y1 = scan.nextInt();int x2 = scan.nextInt();int y2 = scan.nextInt();System.out.println(s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1]);}
}

 

🌳三. 差分

输入一个长度为 n 的整数序列。
 
接下来输入 m 个操作,每个操作包含三个整数 l,r,c,表示将序列中 [l,r] 之间的每个数加上 c。
 
请你输出进行完所有操作后的序列。

输入格式:

第一行包含两个整数 n 和 m。
 
第二行包含 n 个整数,表示整数序列。
 
接下来 m 行,每行包含三个整数 l,r,c,表示一个操作。

输出格式:

共一行,包含 n 个整数,表示最终序列。

数据范围:

1 ≤ n,m ≤ 100000,
 
1 ≤ l ≤ r ≤ n,
 
−1000 ≤ c ≤ 1000,
 
−1000 ≤ 整数序列中元素的值 ≤ 1000

输入样例:

6 3
1 2 2 1 2 1
1 3 1
3 5 1
1 6 1

输出样例:

3 4 5 3 4 2

思路:

  • 差分是求前缀和的逆操作,如果想将a数组中 [l,r] 部分的数据全部加上c,只需要将 b[l] + c,然后 b[r+1] - c 即可。
  • 差分操作和前缀和一样数组下标都从1开始。b[l] + c 后,l后面的数组都会加 c。r 后面的数据也会被改变,要改回来就得 b[r+1] - c
  • 求a[i]的值: 其实就是求b数组的一位前缀和

题解:

  1. 先解决范围问题
static int N = 1000010;
static int[] a = new int[N];
static int[] b = new int[N];
  1. 数据遍历进数组
Scanner scan = new Scanner(System.in);
int n = scan.nextInt();
int m = scan.nextInt();
for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();
}
  1. 构造一下b数组,因为a是b数组的前缀和
for(int i = 1 ; i <= n ; i ++ ){b[i] = a[i] - a[i - 1];
}
  1. 将a数组中 [l,r] 部分的数据全部加上c
while(m -- > 0){int l = scan.nextInt();int r = scan.nextInt();int c = scan.nextInt();b[l] += c;b[r + 1] -= c;
}
  1. 最后求一遍差分数组的前缀和
for(int i = 1 ; i <= n ; i ++ ){b[i] += b[i - 1];System.out.print(b[i] + " ");
}

 
附上总的代码

import java.util.*;public class Test {static int N = 1000010;static int[] a = new int[N];static int[] b = new int[N];public static void main(String[] args){Scanner scan = new Scanner(System.in);int n = scan.nextInt();int m = scan.nextInt();for(int i = 1 ; i <= n ; i ++ ){a[i] = scan.nextInt();}for(int i = 1 ; i <= n ; i ++ ){b[i] = a[i] - a[i - 1];}while(m -- > 0){int l = scan.nextInt();int r = scan.nextInt();int c = scan.nextInt();b[l] += c;b[r + 1] -= c;}for(int i = 1 ; i <= n ; i ++ ){b[i] += b[i - 1];System.out.print(b[i] + " ");}}
}

 

🌴四. 差分矩阵

输入一个 n 行 m 列的整数矩阵,再输入 q 个操作,每个操作包含五个整数x1,y1,x2,y2,c,其中 (x1,y1) 和 (x2,y2) 表示一个子矩阵的左上角坐标和右下角坐标。
 
每个操作都要将选中的子矩阵中的每个元素的值加上 c。
 
请你将进行完所有操作后的矩阵输出。

输入格式:

第一行包含整数 n,m,q。
 
接下来 n 行,每行包含 m 个整数,表示整数矩阵。
 
接下来 q 行,每行包含 5 个整数 x1,y1,x2,y2,c,表示一个操作。

输出格式:

共 n 行,每行 m 个整数,表示所有操作进行完毕后的最终矩阵。

数据范围:

1 ≤ n,m ≤ 1000,
1 ≤ q ≤ 100000,
1 ≤ x1 ≤ x2 ≤ n,
1 ≤ y1 ≤ y2 ≤ m,
−1000 ≤ c ≤ 1000,
−1000 ≤ 矩阵内元素的值 ≤ 1000

输入样例:

3 4 3
1 2 2 1
3 2 2 1
1 1 1 1
1 1 2 2 1
1 3 2 3 2
3 1 3 4 1

输出样例:

2 3 4 1
4 3 4 1
2 2 2 2

思路:

  • 对差分数组操作: b[x1][y1] += c; b[x1 -1][y2] -= c;b[x2][y1 -1] -= c; b[x2 - 1][y2 - 1] += c;
  • 求a的差分数组b:b[i][j] =a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];

题解:

  1. 创建原数组 同时也是b的前缀和数组,a的差分数组
canner sc = new Scanner (System.in);
int n = sc.nextInt() , m = sc.nextInt(), q = sc.nextInt();
int[][] a = new int[1010][1010];//原数组 同时也是b的前缀和数组
int[][] b = new int[1010][1010];//a的差分数组
for(int i = 1;i <= n; i ++) {for(int j = 1; j <= m; j ++) {a[i][j] = sc.nextInt();}
}
  1. 求a的差分数组b
for(int i = 1;i <= n; i ++) {for(int j = 1; j <= m; j ++) {b[i][j] =a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];}
}
  1. 对差分数组操作
for(int i = 0; i < q; i ++) {int x1 = sc.nextInt(),y1 = sc.nextInt(),x2 = sc.nextInt(),y2 = sc.nextInt() ,c = sc.nextInt();b[x1][y1] += c;b[x2 + 1][y1] -= c;b[x1][y2 + 1] -= c;b[x2 + 1][y2 + 1] += c;
}
  1. 再对b数组求一遍前缀和数组 并输出
for(int i = 1;i <= n; i ++) {for(int j = 1; j <= m; j ++) {a[i][j] = b[i][j] + a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];System.out.print(a[i][j] + " ");}System.out.println();
}

 
附上总的代码

import java.util.*;
public class Main{
public static void main(String[] args) {Scanner sc = new Scanner (System.in);int n = sc.nextInt() , m = sc.nextInt(), q = sc.nextInt();int[][] a = new int[1010][1010];int[][] b = new int[1010][1010];for(int i = 1;i <= n; i ++) {for(int j = 1; j <= m; j ++) {a[i][j] = sc.nextInt();}}for(int i = 1;i <= n; i ++) {for(int j = 1; j <= m; j ++) {b[i][j] =a[i][j] - a[i - 1][j] - a[i][j - 1] + a[i - 1][j - 1];}}for(int i = 0; i < q; i ++) {int x1 = sc.nextInt(),y1 = sc.nextInt(),x2 = sc.nextInt(),y2 = sc.nextInt() ,c = sc.nextInt();b[x1][y1] += c;b[x2 + 1][y1] -= c;b[x1][y2 + 1] -= c;b[x2 + 1][y2 + 1] += c;}for(int i = 1;i <= n; i ++) {for(int j = 1; j <= m; j ++) {a[i][j] = b[i][j] + a[i - 1][j] + a[i][j - 1] - a[i - 1][j - 1];System.out.print(a[i][j] + " ");}System.out.println();}
}
}

 

🎋五. 总结

简单的对于一维、二维以及三维的前缀和和差分的计算公式做一个简单的整理:
这里要知道对于n维的前缀和或者差分有 2^n 项

  • 前缀和

一维前缀和: s[i] = s[i-1] + a[i]
 
求[l, r]区间的和:s[r] - s[l-1]
 
二维前缀和:s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j]
 
求[x1, y1] 到 [x2, y2]的和: s[x2][y2] - s[x1-1][y2] + s[x2][y1-1] - s[x1-1][y1-1]

  • 差分

一维差分: 将[l, r]上的所有数+c :b[l] += c , b[r+1] -= c
 
求a[i]的值: 其实就是求b数组的一位前缀和
 
二维差分: 将[x1, y1]到[x2, y2]上的数字+c: b[x1][x2]+=c , b[x2+1][y1] -= c , b[x1][y2+1] -=c , b[x2+1][y2+1] +=c
 
求a[i]的值: 其实就是求b数组的二维前缀和

http://www.tj-hxxt.cn/news/110048.html

相关文章:

  • bitnami wordpress 安装seo工作流程图
  • 恩施做网站seo是怎么优化
  • 下载的软件乱码怎么解决seo白帽优化
  • 网站模块是指什么地方淄博网站营销与推广
  • 洛阳网站建设公司seo优化报价
  • 做外国网用哪些网站有品质的网站推广公司
  • 网站管理助手建站企业员工培训内容及计划
  • 线上咨询上门服务网站建设方案新闻危机公关
  • 岫岩做网站网站推广包括
  • 网站开发项目管理文档模板站长之家网站流量查询
  • 优秀室内设计案例分析seo外包公司多少钱
  • 广州网站建设外包seo营销培训咨询
  • 商城源代码网站seo排名优化方法
  • 西宁网站建设的企业昆明新闻头条最新消息
  • 阿里巴巴免费做网站吗搜索引擎推广的优势
  • 做网站的软件word网站排名点击工具
  • 如何做微信个人网站网站seo怎么做
  • 设计公司做网站价格有趣的网络营销案例
  • 天猫网站建设的意义网站seo软件
  • 做境外盈利网站违法吗山东建站
  • 健康管理公司网站建设厦门网站优化
  • 网站建设 会议主持稿logo设计
  • 龙元建设集团股份有限公司网站地址苏州seo关键词优化推广
  • 做视频哪个网站收入高接app推广接单平台
  • 有没有专门做航拍婚礼网站网络稿件投稿平台
  • 网站优化主旨seo云优化公司
  • 网站建设技巧广东seo点击排名软件哪家好
  • 太极馆如何做网站导航网站怎么推广
  • 烟台景明网络北京建站优化
  • 上海网站建设seo1888网站设计框架