当前位置: 首页 > news >正文

网站建设nayuwang河北seo公司

网站建设nayuwang,河北seo公司,如何建设一个好的企业网站,网页设计与网站建设完全学习手册系列文章目录 第一章 Python 机器学习入门之线性回归 第一章 Python 机器学习入门之梯度下降法 第一章 Python 机器学习入门之牛顿法 第二章 Python 机器学习入门之逻辑回归 逻辑回归 系列文章目录前言一、逻辑回归简介二、逻辑回归推导1、问题2、Sigmoid函数3、目标函数3.1 让…

系列文章目录

第一章 Python 机器学习入门之线性回归
第一章 Python 机器学习入门之梯度下降法
第一章 Python 机器学习入门之牛顿法
第二章 Python 机器学习入门之逻辑回归

逻辑回归

  • 系列文章目录
  • 前言
  • 一、逻辑回归简介
  • 二、逻辑回归推导
    • 1、问题
    • 2、Sigmoid函数
    • 3、目标函数
      • 3.1 让步比
      • 3.2 极大似然估计
      • 3.3 推导
    • 4、代价函数
    • 5、最大化似然函数
  • 三、逻辑回归实现
    • 结果展示

前言

第二次实验开始了,内容是逻辑回归,听起来像是线性回归的兄弟,然而仔细查阅后发现逻辑回归其实是一种分类算法;

我们知道回归算法的结果建立在连续的数据上,分类算法的结果建立在离散的数据上;因此逻辑回归本质上是一种分类算法,那问题就来了,一个分类算法为啥叫回归呢?
在这里插入图片描述

一、逻辑回归简介

百科定义:
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。

简单来说,逻辑回归还是建立在我们之前学习的线性回归模型基础上,使用回归的方法来实现分类的目的;就好像同在一个专业学习,有些人学习计算机是为了成为一个优秀的程序员,有些人学计算机是为了挑选出优秀的程序员,结果不一样但在过程中是有很多的相似之处的。

二、逻辑回归推导

1、问题

假设你是一个大学系的管理员,你想根据两个考试的结果确定每个申请人的录取机会。您可以将以前申请者的历史数据用作逻辑回归的培训集。对于每个培训示例,您都有申请人的两次考试成绩和录取决定。为了实现这一点,我们将建立一个分类模型,根据考试成绩估计入学概率。(取自吴恩达机器学习中文版课后题)

先来分析一下,如果我们现在使用线性回归模型来分析该该题,我们最后得出的结论应该是根据考试成绩来预测入学成绩,但是现在结果需要我们来判断是否能成功入学,那我们就在此基础上对之前的入学成绩设定阈值,根据该阈值对结果进行分类来选择是否录取;

但是线性回归模型往往是一条斜线,如何满足结果不是0就是1呢?因此我们引入了Sigmoid函数。

2、Sigmoid函数

先看一下线性回归模型假设函数
在这里插入图片描述
sigmoid函数公式如下
在这里插入图片描述
将线性回归模型的预测值视为上式的自变量z,可得出下图结果
在这里插入图片描述
然而上图结果仍然不是我们真正需要的结果,我们需要的是一个二元离散模型,结果非1即0,因此我们还需处理一下,根据与阈值的差值判断结果
blog.csdnimg.cn/cc9d8f8ac08e47b98b2d5b5d49bf941e.png)
当y ̂ ==0.5时,我们根据实际情况来定;同时上面的阈值是我们手动设置的(并不一定需要0.5),依情况而定,这也是逻辑回归模型的优势之一

3、目标函数

在上面的sigmiod函数上我们建立了逻辑回归的假设函数,我们想要得到它的目标函数,首先得知道自变量X和结果变量y之间的关系,因此我们引入两个概念让步比极大似然估计

3.1 让步比

让步比可以理解成有利于某一特定事件的概率,如下
在这里插入图片描述

3.2 极大似然估计

思想:如果一个事件发生了,那么发生这个事件的概率就是最大的;对于样本i,其类别为
y ̂ ∈(0,1),对于样本i,可以把h(Xi)看成是一种概率;yi对应是1时,概率是h(Xi)(即Xi属于1的概率,即p(Y=1|X));yi对应是0时,概率是1-h(Xi)(Xi属于0的概率,即p(Y=0|X)

已知下式
在这里插入图片描述
在这里使用极大似然估计做一个假设,假设y ̂ 为样本x为正例的概率,那么1-y ̂ 为样本x为负例的概率

在此基础上我们可以将让步比的对数形式转成特征值相关式子;
在这里插入图片描述
然而我们更想要的是预测值和它发生的概率之间的关系,即让步比之间的逆形式
在这里插入图片描述

3.3 推导

已知样本X结果分类的概率
在这里插入图片描述
将上式联系得y的概念分布函数
在这里插入图片描述
通过y的概率分布函数表达式即可得似然函数为(m为样本数量)
在这里插入图片描述
通过似然函数得到对数似然函数即目标函数
在这里插入图片描述

4、代价函数

对于二分类问题,分别考虑y=1和y=0的情况
在这里插入图片描述

5、最大化似然函数

最大似然估计是似然函数最初也是最自然的应用,似然函数取得最大值表示相应的参数能够使得统计模型最为合理
可以使用梯度上升法和牛顿法两种优化方法,这里说一下梯度上升法,本质和之前的梯度下降原理一一样,展开一阶梯度来求最优解;先求目标函数对参数w的偏导

在这里插入图片描述
因此逻辑回归模型的梯度下降函数如下,wj代表第j个模型参数
在这里插入图片描述

三、逻辑回归实现

结果展示

在这里插入图片描述

http://www.tj-hxxt.cn/news/107810.html

相关文章:

  • ic外贸网站建设怎么弄一个网站平台
  • 中天建设集团有限公司董事长成都seo优化推广
  • 打鱼网站建设十个有创意的线上活动
  • dz如何做门户网站学会计哪个培训机构比较正规
  • 魔站网站开发东莞今天最新消息新闻
  • 网站怎么做域名实名认证西安快速排名优化
  • 查邮箱注册的网站网站关键词优化建议
  • 唐山网站建设费用百度一下你就知道官网百度
  • 合肥网站建设哪里好百度关键词优化怎么做
  • 短视频素材免费做seo推广公司
  • 网页设计与制作有哪些企业网站seo点击软件
  • 公司网站设计好推广自己的网站
  • 那里做网站最好seo网站权重
  • 怎么做卖辅助网站昆明seo技术培训
  • 网站开发厂商谷歌chrome
  • 电商网站建设服务平台国内广告联盟平台
  • 网站建设颜色代码表聊城网站seo
  • 视频主播网站产品营销方案策划书
  • 在网上做效果图的网站营销方案策划
  • 营销型网站搭建公司我有广告位怎么找客户
  • 广告模板在哪个网站好58同城黄页推广
  • 义务网站建设北京百度seo排名点击软件
  • 百度推广 网站备案广告行业怎么找客户
  • 网站首页客服qq做超链接云搜索引擎
  • 什么网站可以直接做word文档西安官网seo技术
  • 国内外网站建设免费推广产品平台有哪些
  • 青岛开发区建设局网站推广项目
  • 制作手机端网站开发网站之家查询
  • 卧龙区网站建设价格网络营销的发展现状及趋势
  • 网页制作一个网站八个页面咋做百度上首页