当前位置: 首页 > news >正文

有源码就可以自己做H5网站吗免费seo排名网站

有源码就可以自己做H5网站吗,免费seo排名网站,手机百度网站证书过期,企业建设网站需要注意什么本站原创文章,转载请说明来自《老饼讲解-机器学习》www.bbbdata.com 目录 一、经典RBF神经网络1.1.经典径向基神经网络是什么1.2.经典径向基神经网络-代码与示例 二、广义回归神经网络GRNN2.1.广义回归神经网络是什么2.2.广义回归神经网络是什么-代码与示例 三、概率…

本站原创文章,转载请说明来自《老饼讲解-机器学习》www.bbbdata.com

目录

  • 一、经典RBF神经网络
    • 1.1.经典径向基神经网络是什么
    • 1.2.经典径向基神经网络-代码与示例
  • 二、广义回归神经网络GRNN
    • 2.1.广义回归神经网络是什么
    • 2.2.广义回归神经网络是什么-代码与示例
  • 三、概率神经网络PNN
    • 3.1.概率神经网络是什么
    • 3.2.概率神经网络是什么-代码与示例

RBF神经网络指的是用RBF曲线来构成的神经网络模型,
RBF曲线
常见的RBF神经网络包括径向基神经网络、概率神经网络、广义回归神经网络等等。
下面我们介绍这几种常见的RBF神经网络。

一、经典RBF神经网络

1.1.经典径向基神经网络是什么

经典径向基神经网络的思想很纯粹,如下
经典径向基神经网络
可以看到,经典径向基神经网络在各个数据点都生成一个径向基。每个径向基的宽度是预设的,然后再求解每个径向基的高度,使得最后所有径向基叠加后能拟合目标曲线。可知,经典径向基神经网络是纯粹的曲线拟合,就是仅从数学角度去使用径向基函数来拟合目标曲线。

1.2.经典径向基神经网络-代码与示例

在matlab中使用newrbe来实现一个径向基神经网络,具体示例如下:

%------代码说明:用newrbe构建一个径向基神经网络 -----------------
% 来自《老饼讲解神经网络》www.bbbdata.com ,matlab版本:2018a   
%-------------------------------------------------------------------%
%----数据准备----                              
x  = [-2,-1,0,1,2;-6,-2,0,3,8];                % 输入数据
y  = [3,2,3,1,2];                              % 输出数据
%----网络训练----                              
net = newrbe(x, y, 0.5);                       % 以X,Y建立径向基网络,目标误差为0.01,径向基的宽度参数spread=0.5
py = sim(net,x)                                % 用建好的网络进行预测,这里的x是要用来进行预测的输入% ----打印结果----------
err_rate = mean(abs(py-y)./abs(y))             % 计算相对误差占比
plot(1:length(y),y,'*',1:length(y),py,'o')     % 绘制结果,x轴代表样本
legend('原始数据的y','网络预测的y')            % 添加图例

运行结果如下:
在这里插入图片描述
可以看到,网络的预测值与真实值完全一致,
这并非偶然,因为本例用于预测的数据就是训练数据,而newrbe在训练数据上是0误差的

二、广义回归神经网络GRNN

2.1.广义回归神经网络是什么

广义回归神经网络General Regression Neural Network也是径向基神经网络的一种,广义回归使用所有历史样本点来综合评估当前样本点。类似于投票的思想,即所有历史样本点都给出当前样本点与自己相似的概率,然后得到最终的综合评估,如下:
y = ∑ i y i ∗ p i y =\sum\limits_{i}y_i*p_i y=iyipi
其中,Pi的计算为:
p ^ i = exp ⁡ ( − a 2 ( x − x i ) 2 ) p i = p j / ∑ j P j \hat{p}_i = \exp(-a^2(x-x_i)^2) \\p_i =p_j/ \sum\limits_{j}P_j p^i=exp(a2(xxi)2)pi=pj/jPj

pi的意义如下图所示:
在这里插入图片描述

它假设x与任何一个已有样本中 xi 相同的概率都服从正态分布,然后再进行归一化就得到pi的计算公式。
相比经典RBF,广义回归更具解释性。

2.2.广义回归神经网络是什么-代码与示例

在matlab中使用newgrnn来实现一个广义回归神经网络,具体示例如下:

%代码说明:径向基newgrnn的matlab工具箱使用Demo
%来自《老饼讲解神经网络》www.bbbdata.com ,matlab版本:2014b
%-----------------------------------------------------
%----数据准备----
x1  = 1:0.2:10;
x2  = -5:0.2:4;
X   = [x1;x2];                % 输入数据,注意中间是分号
Y   = sin (X(1,:))+X(2,:);    % 输出数据%----网络训练----
net = newgrnn(X,Y);           % 网络建立与训练
simY = sim(net, X);           % 用建好的网络拟合原始数据%----结果对比----
figure(1);
t = 1:size(Y,2);
plot(t,Y,'*',t,simY,'r')  

三、概率神经网络PNN

3.1.概率神经网络是什么

概率神经网络ProbabilisticNeuralNetwork是广义回归神经网络的拓展,广义回归神经网络用于数值预测,而概率神经网络则用于类别预测。
概率神经网络

概率神经网络用于类别预测,有多少个类别就有多少个输出,概率神经网络仅仅是将广义回归神经网络再加上一个compet运算,即哪个输出最大就置1,其余置0。

3.2.概率神经网络是什么-代码与示例

在matlab中使用newgrnn来实现一个广义回归神经网络,具体示例如下:

% 训练数据
P = [1 2 3 4 5 6 7];   % 输入数据
Tc = [1 2 3 2 2 3 1];  % 输出数据:类别编号
T = ind2vec(Tc);       % 将类标转换为onehot编码格式%设计一个PNN神经网络,并测试
net = newpnn(P,T);     % 生成一个概率神经网络
Y = sim(net,P)         % 用网络进行预测
Yc = vec2ind(Y)        % 将预测结果转为类别编号 

运行结果如下:
在这里插入图片描述
以上就是三种常见的RBF神经网络的介绍了


相关链接:

《老饼讲解-机器学习》:老饼讲解-机器学习教程-通俗易懂
《老饼讲解-神经网络》:老饼讲解-matlab神经网络-通俗易懂
《老饼讲解-神经网络》:老饼讲解-深度学习-通俗易懂

http://www.tj-hxxt.cn/news/107204.html

相关文章:

  • dedecms修改网站教程疫情二十条优化措施
  • 上海企业核名查询搜索关键词排名优化服务
  • 莱州网站建设百度首页入口
  • 工业互联网平台的意义有哪些泰州seo外包
  • 新手学做网站txt下载正规的培训机构有哪些
  • 沈阳做企业网站全能搜
  • 自助建站免费网站seo先上排名后收费
  • 网站手机端页面怎么做的app推广是什么工作
  • 网站必须做公安备案么最新的全国疫情数据
  • 网站如何做中英文双语言怎样在浏览器上找网站
  • 网络投注网站是怎么建设网页设计主要做什么
  • 网站 做实名认证吗公司做网页要多少钱
  • 湖北做网站系统哪家好无需下载直接进入的网站的代码
  • 在游戏网站做中介合法泰安seo
  • 做情趣用品网站需要哪些资质郑州网站推广方案
  • 毕业设计做健身房网站的意义二十个优化
  • 网站访问量js运营商推广5g技术
  • 网站开发公司长春seo与网络推广的区别和联系
  • 网站 带数据怎么创建网站
  • 科技有限公司英文seo引擎搜索网站关键词
  • 网站怎么做子页推广员网站
  • wordpress个人空间郑州网站优化排名
  • psd网站排行榜百度网站域名
  • 网站建设费用价格云搜索app官网
  • 天津网站建设公司排名高端网站建设公司排名
  • 江阴安泰物流有限公司网站谁做的发布新闻
  • 江西省建设厅网站官网怎么做网络营销平台
  • 微信制作网站开发推广的渠道和方法有哪些
  • 怎么做网站页面网站推广排名教程
  • 网站开发模式b s市场调研报告ppt