当前位置: 首页 > news >正文

b2b2c商城软件网站优化排名服务

b2b2c商城软件,网站优化排名服务,网页设计与制作教程期末考试题,如何做网站服务器映射从0开始yolov8模型目标检测训练 1 大环境 首先有大环境,即已经准备好了python、nvidia驱动、cuda、cudnn等。 2 yolov8的虚拟环境 2.1 创建虚拟环境 conda create -n yolov8 python3.102.2 激活虚拟环境 注意:激活虚拟环境的时候,需要清…

从0开始yolov8模型目标检测训练

1 大环境

首先有大环境,即已经准备好了python、nvidia驱动、cuda、cudnn等。

2 yolov8的虚拟环境

2.1 创建虚拟环境

conda create -n yolov8 python=3.10

2.2 激活虚拟环境

注意:激活虚拟环境的时候,需要清楚自己创建的虚拟环境(yolov8)是在root权限下,还是在user权限下,否则,当使用source activate yolov8激活环境的时候,可能一直会提示Could not find conda environment: yolov5s;You can list all discoverable environments with conda info --envs

source activate yolov8
# 如果是windows的话,使用
conda activate yolov8
# 关闭虚拟环境
source deactivate yolov8
# 删除虚拟环境
conda remove -n yolov8 --all
# 删除虚拟环境中的某个包
conda remove --name $yolov8  $package_name 
# 添加conda的清华镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn

其它:普通用户和root用户权限相互切换的方法:

exit
或
su user(user是自己安装时的用户名)

2.3 在虚拟环境中安装yolov8的必要依赖项

进入yolov8项目的根目录下

cd MyTrain/ultralytics-main

然后,使用Pip在一个Python>=3.8环境中安装ultralytics包,此环境还需包含PyTorch>=1.7。同时也会安装所有必要的requirements.txt。

pip install ultralytics

3 准备数据集

3.1 数据集介绍

采用26058张图片,标签文件是之前用标注精灵标注导出的json文件。

3.2 标签统计

统计标注文件包含的标签类别及数量如下

'suv': 19843, 'car': 222010, 'van': 8538, 'bigtru': 11775, 'bus': 7733, 'tralight': 32538, 'tricycle': 9454, 'elec': 45199, 'pedes': 36552, 'smatru': 2281, 'bike': 7908, 'coach': 443, 'tank': 2659, 'pickup': 943, 'trailer': 438, 'mpv': 1839, ' car': 1354, ' ca   r': 1, 'elec ': 12, 'moto': 843, 'crane': 173, 'warm': 151644, 'percycle': 127, 'engine': 157, 'polic': 398, 'coni': 9758, 'pedesd': 13, 'van ': 1, 'motopoli': 22, 'escort': 26, 'tralight ': 1, 'right': 78, 'left': 114, 'stopline': 4, 'zebraline': 78, 'bull': 19, 'excava': 4, 'suv ': 2, 'zebraliner': 1, 'car ': 3, '            ': 1, 'car      ': 1, 'ambu': 168, 'sanJiaoWarm': 778, 'suLiaoDao': 506, 'zhiXiang': 1248, 'suLiaoDai': 414, 'lunTai': 643, 'yiZi': 20, 'ar': 1, '  car': 141, 'bus-c': 2, 'elerc': 1, 'pedes ': 1, 'pedesr': 3, 'carr': 1, 'bigtrur': 2, 'elecr': 12, 'suvr': 72, 

上述标签类别解释:上述存在的一些奇怪标签,如’carr’、‘bigtrur’、'pedes ‘等很显然是由于误输入’r’或空格字符导致的,故在转换为yolov5的标注格式的时候,需考虑在内。故采用映射如下,得到标签及ID。其中标签’sanJiao Warm’, ‘suLiaoDao’, ‘zhiXiang’, ‘suLiaoDai’, ‘lunTai’, 'yiZi’等标签不作为训练。

{'suv': 1, 'car': 1, 'van': 1, 'bigtru': 3, 'bus': 2, 'tralight': 9, 'tricycle': 6, 'elec': 5, 'pedes': 0, 'smatru': 3, 'bike': 4, 'coach': 2, 'tank': 3, 'pickup': 1, 'trailer': 3, 'mpv': 1, ' car': 1, ' ca   r': 1, 'elec ': 5, 'moto': 5, 'crane': 3, 'warm': 8, 'engine': 3, 'polic': 10, 'coni': 7, 'pedesd': 0, 'van ': 1, 'motopoli': 5, 'escort': 3, 'tralight ': 9, 'bull': 3, 'excava': 3, 'suv ': 1, 'car ': 1,  'car      ': 1, 'ambu': 10, 'ar': 1, '  car': 1, 'bus-c': 2, 'elerc': 5, 'pedes ': 0,  'pedesr': 0, 'carr': 1, 'bigtrur': 3, 'elecr': 5, 'suvr': 1}

标签重新分配如下

pedes: 0, car: 1, bus: 2, truck: 3, bike: 4, elec: 5, tricycle: 6, coni: 7, warm: 8, tralight: 9, special_vehicles: 10

3.3 转为yolov8的txt

yolov8的标签文件和yolov5是一样的,需要归一化(0-1)的目标类型、 Box中心点坐标x、Box中心点坐标y、Box宽、Box高

--datasTrain
------train_list.txt	# 包含训练每张图片的路径
------val_list.txt
------test_list.txt
------images
----------train     	# 存放训练数据集的图片(.jpg)
----------val
----------test
------labels
----------train			# 存放训练图片对应的标签文件(.txt)
----------val
----------tes

datasTrain/labels/train目录下的文件示例,如下为data220829_0001.jpg对应的data220829_0001.txt的前6行内容。

2 0.29427 0.33842 0.19479 0.27685
3 0.11380 0.56111 0.22760 0.43703
3 0.39479 0.41064 0.11041 0.17314
1 0.39401 0.29490 0.02760 0.06759
1 0.40729 0.25833 0.05 0.07222
1 0.61875 0.16574 0.02604 0.04444

4 准备训练

4.1 模型的配置文件

修改路径下的配置文件 ultralytics-main/ultralytics/yolo/cfg/default.yaml 参数,以执行相应的操作(train、val、test)。

yolo/cfg/default.yaml 中如下参数需设置或查验与任务是否一致(包含训练模式示例值)

task: detect  # inference task, i.e. detect, segment, classify
mode: train  # YOLO mode, i.e. train, val, predict, export# Train settings -------------------------------------------------
# model 使用.pt文件是通过预训练模型
# model:  ./preDetectModel/yolov8s.pt 
# model 使用.yaml文件是从头开始训练,使用COCO模型来预训练口罩检测不可取,必须从头训练
model:  D:/yolov5train/yolov8_main/ultralytics/models/v8/yolov8s.yaml  
# data: path to data file, i.e. coco128.yaml
data:  D:/yolov5train/yolov8_main/ultralytics/yolo/v8/detect/data/my_yolov8.yaml
epochs: 300  # number of epochs to train for
patience: 50  # epochs to wait for no observable improvement for early stopping of training
batch: 2  # number of images per batch (-1 for AutoBatch)
imgsz: 960  # size of input images as integer or w,h
save: True  # save train checkpoints and predict results
save_period: 10 # Save checkpoint every x epochs (disabled if < 1,设为-1则禁用保存检查点)single_cls: False  # train multi-class data as single-class
rect: True  # support rectangular train/val if mode='train'/'val'
resume: False  # resume training from last checkpoint

上述参数详解参考博客:https://blog.csdn.net/weixin_45277161/article/details/131047101

其中模型的配置文件位于ultralytics-main/ultralytics/models/v8/yolov8s.yaml ,该文件包含主要内容如下:

# Parameters
nc: 11  # number of classesscales: # model compound scaling constants
# [depth, width, max_channels]
s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs# YOLOv8.0n backbone
backbone:
# YOLOv8.0n head
head:

4.2 数据的配置文件

数据集的配置文件模仿ultralytics-main/ultralytics/datasets/coco.yaml文件的写法,记为my_yolov8.yaml,该文件包含内容如下

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/yolov5train/datasTrain3_More  # dataset root dir
train: D:/yolov5train/datasTrain3_More/train_list.txt  # train images (relative to 'path') 
val: D:/yolov5train/datasTrain3_More/val_list.txt  # val images (relative to 'path') 
test: D:/yolov5train/datasTrain3_More/test_list.txt# Classes
names:0: pedes1: car2: bus3: truck4: bike5: elec6: tricycle7: coni8: warm9: tralight10: specialVehicle

4.3 train的.py文件

其实train.py文件中的参数在ultralytics-main/ultralytics/yolo/cfg/default.yaml中如果设置好了的话,就可以不用管了。如果没有设置/yolo/cfg/default.yaml的话,采用如下方式启动训练,否则,采用4.4所述的方式启动训练命令。

ultralytics-main/ultralytics$yolo task=detect mode=train model=models/v8/yolov8s.yaml data=/ultralytics/yolo/v8/detect/data/my_yolov8.yaml imgsz=960 batch=-1 epochs=300 patience=50 workers=4
# 同时也尽可以正确设置/yolo/cfg/default.yaml中的参数 

4.4 训练命令

cd ultralytics-main/ultralytics/
yolo cfg=./yolo/cfg/default.yaml  
http://www.tj-hxxt.cn/news/105109.html

相关文章:

  • 网站源码提取工具广州seo网站营销
  • 做网站大家都找谁下载百度极速版免费安装
  • 网站上传的图片怎么做的清晰度微信运营方案
  • 郑州网站建设培训nba交易最新消息
  • 我们做的网站是优化型结构中国大数据平台官网
  • hostinger建站wordpress百度直播推广
  • 深圳装修公司哪家好旺道seo优化软件怎么用
  • 汕头网站网店建设微信指数怎么看
  • 网站推广公司简介google推广及广告优缺点
  • 深圳网a深圳网站建设百度识图在线使用
  • 网站页面布局设计思路网站搭建关键词排名
  • 哪个网站上做自媒体最好黄页88网站推广方案
  • 厦门模板做网站漂亮的网页设计
  • 建设摩托车专卖店谷歌seo快速排名优化方法
  • 网站备案需要关闭百度指数排行榜
  • 福清做网站的公司web网站模板
  • 广州购网站建设seo计费系统开发
  • python语言程序设计基础商丘网站seo
  • 用windows搭建手机网站苏州百度推广公司
  • 学校网站建设的意义的主要负责人seo公司推荐推广平台
  • 苹果园网站建设许昌网站seo
  • 杭州哪里找网站建设的兼职怎么上百度搜索
  • 做一个小型网站多少钱天津seo网站管理
  • 自适应网站建站开发软件app需要多少钱
  • 杭州网站制作工具模板网站
  • 安徽智农网络信息技术服务有限公司 网站开发网站服务器搭建与管理
  • 网站业务需求文档网络推广和网络销售的区别
  • 用自己的服务器做网站社群推广平台
  • wordpress 翻页功能百度seo费用
  • 做网站后怎样让其他人交互电商营销策划方案