当前位置: 首页 > news >正文

个人购物网站 怎么建搜索引擎营销的优势

个人购物网站 怎么建,搜索引擎营销的优势,网站建设改版公司,做网站收费 知乎目录 一,什么是并查集 二,并查集的结构 三,并查集的代码实现 1,并查集的大致结构和初始化 2,find操作 3,Union操作 4,优化 小结: 四,并查集的应用场景 省份…

目录

一,什么是并查集

二,并查集的结构 

三,并查集的代码实现 

1,并查集的大致结构和初始化

2,find操作 

3,Union操作

4,优化 

小结:

四,并查集的应用场景

省份数量[OJ题] 


一,什么是并查集

核心概念:并查集是一种 用于管理元素分组 的数据结构。

在一些应用问题中,需将n个不同的元素划分成一些不相交的集合,开始时,n个元素各自成一个集合,然后按照一定规律将部分集合合成一个集合,也就是集合合并并查集(union-find)适合来描述这类问题。

对于并查集,我们可以将它看成是一个森林,森林是由多棵树组成的,并查集中的一个个集合就可以看作是树。

示例:

二,并查集的结构 

并查集的存储结构和树的双亲表示法相似。

所谓双亲表示法,就是在树的节点中,只存储父节点的指针,不存储孩子节点的指针。通过指针可以找到父节点。因为对于一颗树来说,可能有多个孩子 ,但只有一个父节点。

 

对于上图中:

节点0的数组值为-4,说明该节点为根节点。

节点6的数组值为0,说明该节点的父节点为0。

节点7的数组值为0,说明该节点的父节点为0。

节点8的数组值为0,说明该节点的父节点为0。

三,并查集的代码实现 

并查集主要支持一下操作:

  • 查询(find),查询一个元素在哪个集合中。
  • 合并(union),将两个集合合并为一个。

1,并查集的大致结构和初始化

class UnionFind
{
public:
    UnionFind(size_t n)
        :_ufs(n,-1)
    {}

    //......
private:
    vector<int> _ufs;
};

2,find操作 

在并查集中找到包含x的根

int findRoot(int x)
{
    int root = x;

    while (_ufs[root] >= 0)
        root = _ufs[root];

    return root;
}
 

3,Union操作

合并两个集合

void Union(int x1, int x2)
{
    int root1 = findRoot(x1);
    int root2 = findRoot(x2);
    if (root1 == root2)
        return; //在同一个集合中

    //这里在合并的时候采用数据量小的向数据量大的合并
    //也就是小树向大树合并
    if (abs(_ufs[root1]) < abs(_ufs[root2]))//root1节点更少
    {
        _ufs[root2] += _ufs[root1];
        _ufs[root1] = root2;   //小树合并到大树
    }
    else
    {
        //root2节点更少
        _ufs[root1] += _ufs[root2];
        _ufs[root2] = root1;
    }
}

4,优化 

当树比较高时,我们在反复查某个节点的根节点时,每次都会花费大量时间。

优化方法路径压缩,只要查找某个节点一次,就将查找路径上的所有节点挂到根节点下面。

如图:查找D的根A,查找路径上包含节点B,将节点D和节点B直接挂在根节点A的下面。

//路径压缩
int findRoot(int x)
{int root = x;while (_ufs[root] >= 0)root = _ufs[root];//路径压缩while (_ufs[x] >= 0){int parent = _ufs[x];_ufs[x] = root;   //挂在根节点的下面x = parent;}return root;
}

小结:

上述实现的并查集,支持连续元素。如果是处理非连续元素,需要使用哈希表代替数组(需额处理元素与索引的映射)。

核心思路:

  • 哈希映射unordered_map将任意类型元素映射为连续整数ID,内部用数组管理父节点
  • 动态扩容:自动添加新元素,无需预先指定规模。

  • 模板化:支持泛型数据类型(如string等)。

四,并查集的应用场景

  1. 连通性检测:判断网络中两个节点是否连通。

  2. 最小生成树(Kruskal算法):动态合并边,避免环。

  3. 社交网络分组:快速合并好友关系,查询是否属于同一社交圈。

总结:

并查集通过高效的查找与合并操作,成为处理动态连通性问题的核心数据结构。其优化方法(路径压缩、按秩合并)确保了接近常数的单次操作时间复杂度,适用于大规模数据场景。

其中的按秩合并就是合并集合时小树向大树合并。

省份数量[OJ题] 

题目链接:LCR 116. 省份数量 - 力扣(LeetCode)

 isConnected[i][j]=1,表示城市i和j连通,连通的城市为一个省份。用并查集将连通的数据放入一个集合,再统计最后的集合个数即可。

class Solution {
public:int findCircleNum(vector<vector<int>>& isConnected) {int n=isConnected.size();vector<int> _ufs(n,-1);//查找根auto find=[&](int x)->int{int root=x;while(_ufs[root]>=0)root=_ufs[root];return root;};for(int i=0;i<n;i++)for(int j=0;j<n;j++){if(isConnected[i][j]==1){//合并i和j集合int rooti=find(i),rootj=find(j);if(rooti!=rootj){_ufs[rooti]+=_ufs[rootj];_ufs[rootj]=rooti;}}}//统计集合数int ret=0;for(auto x:_ufs){if(x<0)ret++;}return ret;}
};

http://www.tj-hxxt.cn/news/104413.html

相关文章:

  • 网站设计服务合同百度数据库
  • 孟村县做网站价格网站优化推广公司
  • 自己做商城网站在线seo推广软件
  • 在线设计平台哪个好用seo网站推广收费
  • 网站模块分类自己怎样在百度上做推广
  • 备案期间 需要关闭网站吗免费自己制作网站
  • 旅游电商网站排名seo研究所
  • 定制网站报价百度搜索关键词优化
  • 购买马来网站域名google搜索引擎官网
  • 排版设计网站seo优化网站词
  • 济南网站建设哪家公司好西安自助建站
  • 教做家常菜的网站直通车关键词优化口诀
  • 动态网站建设培训chrome官方下载
  • 如果做网站赚钱网页设计收费标准
  • 湖南做网站 在线磐石网络收录查询站长工具
  • 吴桥做网站价格站长工具权重
  • 洛阳网站建设招聘信息品牌推广与传播
  • 网站建设是平面设计吗搜索关键词排名优化
  • 金泉网做网站要找谁年轻人不要做网络销售
  • 海沧建设网站多少seo公司重庆
  • 产品网站设计自己的网站怎么建立
  • 如何建网站运营网站新人学会seo
  • 网站建设实习小结潍坊百度seo公司
  • 门窗网站模板搜索引擎推广的方法有
  • 网站建设毕业设计模板廊坊seo外包公司费用
  • 福建工商网上登记平台优化培训学校
  • nodejs做静态网站深圳seo网络推广
  • 做网站怎么选服务器为什么seo工资不高
  • 辽宁网站建站网页设计
  • 网站建设的意见建议搜索引擎营销的特点是