当前位置: 首页 > news >正文

绵阳汽车网站制作我想在百度上做广告怎么做

绵阳汽车网站制作,我想在百度上做广告怎么做,手机游戏网站模板,dw网站怎么做点击图片放大分类目录:《自然语言处理从入门到应用》总目录 对话知识图谱记忆(Conversation Knowledge Graph Memory) 这种类型的记忆使用知识图谱来重建记忆: from langchain.memory import ConversationKGMemory from langchain.llms impo…

分类目录:《自然语言处理从入门到应用》总目录


对话知识图谱记忆(Conversation Knowledge Graph Memory)

这种类型的记忆使用知识图谱来重建记忆:

from langchain.memory import ConversationKGMemory
from langchain.llms import OpenAIllm = OpenAI(temperature=0)
memory = ConversationKGMemory(llm=llm)
memory.save_context({"input": "say hi to sam"}, {"output": "who is sam"})
memory.save_context({"input": "sam is a friend"}, {"output": "okay"})
memory.load_memory_variables({"input": 'who is sam'})

输出:

{'history': 'On Sam: Sam is friend.'}

我们还可以将历史记录作为消息列表获取,如果我们与聊天模型一起使用时,这将非常有用:

memory = ConversationKGMemory(llm=llm, return_messages=True)
memory.save_context({"input": "say hi to sam"}, {"output": "who is sam"})
memory.save_context({"input": "sam is a friend"}, {"output": "okay"})
memory.load_memory_variables({"input": 'who is sam'})

输出:

{'history': [SystemMessage(content='On Sam: Sam is friend.', additional_kwargs={})]}

我们还可以更模块化地从新消息中获取当前实体,这将使用前面的消息作为上下文:

memory.get_current_entities("what's Sams favorite color?")

输出:

['Sam']

我们还可以更模块化地从新消息中获取知识三元组,这也将使用前面的消息作为上下文:

memory.get_knowledge_triplets("her favorite color is red")

输出:

[KnowledgeTriple(subject='Sam', predicate='favorite color', object_='red')]
在链中使用

现在让我们在一个链中使用这个功能:

llm = OpenAI(temperature=0)
from langchain.prompts.prompt import PromptTemplate
from langchain.chains import ConversationChaintemplate = """The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate.Relevant Information:{history}Conversation:
Human: {input}
AI:"""prompt = PromptTemplate(input_variables=["history", "input"], template=template
)
conversation_with_kg = ConversationChain(llm=llm, verbose=True, prompt=prompt,memory=ConversationKGMemory(llm=llm)
)
conversation_with_kg.predict(input="Hi, what's up?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. 
If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate.Relevant Information:Conversation:
Human: Hi, what's up?
AI:> Finished chain.

输出:

" Hi there! I'm doing great. I'm currently in the process of learning about the world around me. I'm learning about different cultures, languages, and customs. It's really fascinating! How about you?"

输入:

conversation_with_kg.predict(input="My name is James and I'm helping Will. He's an engineer.")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. 
If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate.Relevant Information:Conversation:
Human: My name is James and I'm helping Will. He's an engineer.
AI:> Finished chain.

输出:

" Hi James, it's nice to meet you. I'm an AI and I understand you're helping Will, the engineer. What kind of engineering does he do?"

输入:

conversation_with_kg.predict(input="What do you know about Will?")

输入:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. 
If the AI does not know the answer to a question, it truthfully says it does not know. The AI ONLY uses information contained in the "Relevant Information" section and does not hallucinate.Relevant Information:On Will: Will is an engineer.Conversation:
Human: What do you know about Will?
AI:> Finished chain.

输出:

' Will is an engineer.'

对话摘要记忆ConversationSummaryMemory

现在让我们来看一下使用稍微复杂的记忆类型ConversationSummaryMemory。这种类型的记忆会随着时间的推移创建对话的摘要。这对于从对话中压缩信息非常有用。让我们首先探索一下这种类型记忆的基本功能:

from langchain.memory import ConversationSummaryMemory, ChatMessageHistory
from langchain.llms import OpenAImemory = ConversationSummaryMemory(llm=OpenAI(temperature=0))
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.load_memory_variables({})

输出:

{'history': '\nThe human greets the AI, to which the AI responds.'}

我们还可以将历史记录作为消息列表获取,如果我们正在与聊天模型一起使用,这将非常有用:

memory = ConversationSummaryMemory(llm=OpenAI(temperature=0), return_messages=True)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.load_memory_variables({})

输出:

    {'history': [SystemMessage(content='\nThe human greets the AI, to which the AI responds.', additional_kwargs={})]}

我们还可以直接使用predict_new_summary方法:

messages = memory.chat_memory.messages
previous_summary = ""
memory.predict_new_summary(messages, previous_summary)

输出:

'\nThe human greets the AI, to which the AI responds.'
使用消息进行初始化

如果我们有类似的消息,则可以很容易地使用ChatMessageHistory来初始化这个类,它将会计算一个摘要在加载过程中。

history = ChatMessageHistory()
history.add_user_message("hi")
history.add_ai_message("hi there!")
memory = ConversationSummaryMemory.from_messages(llm=OpenAI(temperature=0), chat_memory=history, return_messages=True)
memory.buffer

输出:

'\nThe human greets the AI, to which the AI responds with a friendly greeting.'
在对话链中使用

让我们通过一个示例来演示在对话链中使用这个功能,同样设置verbose=True以便我们可以看到提示。

from langchain.llms import OpenAI
from langchain.chains import ConversationChain
llm = OpenAI(temperature=0)
conversation_with_summary = ConversationChain(llm=llm, memory=ConversationSummaryMemory(llm=OpenAI()),verbose=True
)
conversation_with_summary.predict(input="Hi, what's up?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi, what's up?
AI:> Finished chain.

输出:

" Hi there! I'm doing great. I'm currently helping a customer with a technical issue. How about you?"

输入:

conversation_with_summary.predict(input="Tell me more about it!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue.
Human: Tell me more about it!
AI:> Finished chain.

输出:

" Sure! The customer is having trouble with their computer not connecting to the internet. I'm helping them troubleshoot the issue and figure out what the problem is. So far, we've tried resetting the router and checking the network settings, but the issue still persists. We're currently looking into other possible solutions."

输入:

conversation_with_summary.predict(input="Very cool -- what is the scope of the project?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:The human greeted the AI and asked how it was doing. The AI replied that it was doing great and was currently helping a customer with a technical issue where their computer was not connecting to the internet. The AI was troubleshooting the issue and had already tried resetting the router and checking the network settings, but the issue still persisted and they were looking into other possible solutions.
Human: Very cool -- what is the scope of the project?
AI:> Finished chain.

输出:

" The scope of the project is to troubleshoot the customer's computer issue and find a solution that will allow them to connect to the internet. We are currently exploring different possibilities and have already tried resetting the router and checking the network settings, but the issue still persists."

会话摘要缓冲记忆 ConversationSummaryBufferMemory

ConversationSummaryBufferMemoryConversationBufferMemoryConversationSummaryMemory的概念结合起来。它在内存中保留了最近的一些对话交互,并将它们编译成一个摘要。与先前的实现不同,它使用标记长度来确定何时刷新交互,而不是交互数量。

from langchain.memory import ConversationSummaryBufferMemory
from langchain.llms import OpenAI
llm = OpenAI()
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=10)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})
memory.load_memory_variables({})

输出:

{'history': 'System: \nThe human says "hi", and the AI responds with "whats up".\nHuman: not much you\nAI: not much'}

我们还可以将历史记录作为消息列表获取,如果我们正在与聊天模型一起使用,将非常有用:

memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=10, return_messages=True)
memory.save_context({"input": "hi"}, {"output": "whats up"})
memory.save_context({"input": "not much you"}, {"output": "not much"})

我们还可以直接利用predict_new_summary方法:

messages = memory.chat_memory.messages
previous_summary = ""
memory.predict_new_summary(messages, previous_summary)

输出:

'\nThe human and AI state that they are not doing much.'
在链式结构中的使用

让我们通过一个例子来演示在链式结构中的使用ConversationSummaryBufferMemory,我们同样设置verbose=True以便我们可以看到提示信息:

from langchain.chains import ConversationChain
conversation_with_summary = ConversationChain(llm=llm, # We set a very low max_token_limit for the purposes of testing.memory=ConversationSummaryBufferMemory(llm=OpenAI(), max_token_limit=40),verbose=True
)
conversation_with_summary.predict(input="Hi, what's up?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:Human: Hi, what's up?
AI:> Finished chain.

输出:

" Hi there! I'm doing great. I'm learning about the latest advances in artificial intelligence. What about you?"

输入:

conversation_with_summary.predict(input="Just working on writing some documentation!")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
Human: Hi, what's up?
AI:  Hi there! I'm doing great. I'm spending some time learning about the latest developments in AI technology. How about you?
Human: Just working on writing some documentation!
AI:> Finished chain.

输出:

' That sounds like a great use of your time. Do you have experience with writing documentation?'

输入:

# We can see here that there is a summary of the conversation and then some previous interactions
conversation_with_summary.predict(input="For LangChain! Have you heard of it?")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
System: 
The human asked the AI what it was up to and the AI responded that it was learning about the latest developments in AI technology.
Human: Just working on writing some documentation!
AI:  That sounds like a great use of your time. Do you have experience with writing documentation?
Human: For LangChain! Have you heard of it?
AI:> Finished chain.

输出:

" No, I haven't heard of LangChain. Can you tell me more about it?"

输入:

# We can see here that the summary and the buffer are updated
conversation_with_summary.predict(input="Haha nope, although a lot of people confuse it for that")

日志输出:

> Entering new ConversationChain chain...
Prompt after formatting:
The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know.Current conversation:
System: 
The human asked the AI what it was up to and the AI responded that it was learning about the latest developments in AI technology. The human then mentioned they were writing documentation, to which the AI responded that it sounded like a great use of their time and asked if they had experience with writing documentation.
Human: For LangChain! Have you heard of it?
AI:  No, I haven't heard of LangChain. Can you tell me more about it?
Human: Haha nope, although a lot of people confuse it for that
AI:> Finished chain.

输出:

' Oh, okay. What is LangChain?'

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

http://www.tj-hxxt.cn/news/102487.html

相关文章:

  • 做的网站每年需要续费产品经理培训哪个机构好
  • 如何创建旅游网站站长网
  • 昆明营销型网站建设公司seo网站内容优化有哪些
  • 做网站怎么宣传运营深圳外包网络推广
  • 外贸网络营销是做什么的电商中seo是什么意思
  • ps和dw怎么做网站网站搜索优化排名
  • 手机网站建设市场报价seo新站如何快速排名
  • 做音乐分享的网站网站推广方法大全
  • 台州网站建设公司威海网站制作
  • 北京企业网站seo微信引流推广
  • b2b的网站代表深圳网站设计
  • 深圳福田网站建设b站推广网站入口202
  • 廊坊做网站外包中国建设网官方网站
  • 东莞做网站公司有哪些360优化大师官网
  • wps文字可以做网站吗网站流量查询工具
  • 校园门户网站开发需求分析杭州seo整站优化
  • 做网站如何找客户灰色seo关键词排名
  • 网站建设类发票税率多少钱icp备案查询
  • 网站建设优化服务公司网站运营
  • 网业认证怎么认证seo综合排名优化
  • 哪个公司做网站最好深圳网站维护的内容有哪些
  • 有服务器域名源码怎么做网站平台seo搜索引擎优化岗位要求
  • 网站博客怎么做seo优化与sem推广有什么关系
  • 网站建设服务公司宣传语言百度词条官网入口
  • 企业网站登录公众号开发
  • 公司注册资本可以随便填吗烟台seo外包
  • 企业网站怎么做中英文切换会计培训班一般收费多少
  • 长沙信息网安徽网站seo
  • 河南网站建设电话注册安全工程师
  • WEB网站开发架构模式发展营销手机都有什么功能啊