当前位置: 首页 > news >正文

企业手机网站建设精英软件开发公司有哪些

企业手机网站建设精英,软件开发公司有哪些,专业,像淘宝购物网站建设需要哪些专业人员这里写目录标题 1.目标检测 Detection2.实例分割 segment3.图像分类 classify4.关键点估计 Keypoint detection5.视频帧检测 video detect6.视频帧分类 video classify7.旋转目标检测 obb detect8.替换yolo11模型 给我点个赞吧,谢谢了附录coco80类名称 笔记本 华为m…

这里写目录标题

    • 1.目标检测 Detection
    • 2.实例分割 segment
    • 3.图像分类 classify
    • 4.关键点估计 Keypoint detection
    • 5.视频帧检测 video detect
    • 6.视频帧分类 video classify
    • 7.旋转目标检测 obb detect
    • 8.替换yolo11模型
  • 给我点个赞吧,谢谢了
    • 附录coco80类名称

笔记本 华为matebook14s,windows系统,cpu
1.装Label-studio
2.装Label-studio-ml-backend
3.装ultralytics
4.装docker desktop 并点击启动
在这里插入图片描述

配置好docker-composel.yml文件32 33行
32表示从docker容器里访问容器外的网址,label-studio默认端口8080
33表示label-studio API KEY ,获取方式

  - LABEL_STUDIO_URL=http://host.docker.internal:8080- LABEL_STUDIO_API_KEY=d3ece86209a6a0ca850d468d6c42fa3d7d78be47

点击label-studio头像-》点击Account & settings-》复制access token
在这里插入图片描述
在这里插入图片描述

然后拉取镜像,第一次耗时一个小时左右。记得科学上网呦

cd label_studio_ml\examples\yolo\
docker-compose up --build

在这里插入图片描述

结果如下就表示启动docker成功:
在这里插入图片描述
在label-studio 后台model处导入label-studio-ml-backend默认网址:
http://localhost:9090
在这里插入图片描述
如果连接成功,会有测试通过,显示connected,否则报错
自行修改参考docker-compose.yml第46行

    ports:- "9090:9090"

1.目标检测 Detection

导入示例标注配置:

<View><Image name="image" value="$image"/><RectangleLabels name="label" toName="image" model_score_threshold="0.25" opacity="0.1"><Label value="Person" background="red"/><Label value="Car" background="blue"/></RectangleLabels>
</View>

最后成功

在这里插入图片描述

2.实例分割 segment

替换分割模型,
只需要在标签处修改:

<View><Image name="image" value="$image"/><PolygonLabels name="label" toName="image" model_score_threshold="0.25" opacity="0.1"><Label value="Car" background="blue"/><Label value="Person" background="red"/></PolygonLabels>
</View>

然后删除目标检测的预测框就可以:
选中图片-》点击左上角 6 Tasks-》Delete Predictions
在这里插入图片描述

然后点击随便一张图片,重新预测结果
在这里插入图片描述

3.图像分类 classify

替换图像分类的标签

<View><Image name="image" value="$image"/><Choices name="choice" toName="image" model_score_threshold="0.25"><Choice value="Airplane" predicted_values="aircraft_carrier,airliner,airship,warplane"/><Choice value="Car" predicted_values="limousine,minivan,jeep,sports_car,passenger_car,police_van"/></Choices>
</View>

结果显示在左下角的分类里。
在这里插入图片描述

4.关键点估计 Keypoint detection

替换标签:

<View><RectangleLabels name="keypoints_bbox" toName="image" model_skip="true"><Label value="person"/></RectangleLabels><KeyPointLabels name="keypoints" toName="image"model_score_threshold="0.75" model_point_threshold="0.5" model_add_bboxes="true" model_point_size="1"model_path="yolov8n-pose.pt"><Label value="nose" predicted_values="person" model_index="0" background="red" /><Label value="left_eye" predicted_values="person" model_index="1" background="yellow" /><Label value="right_eye" predicted_values="person" model_index="2" background="yellow" /><Label value="left_ear" predicted_values="person" model_index="3" background="purple" /><Label value="right_ear" predicted_values="person" model_index="4" background="purple" /><View><Label value="left_shoulder" predicted_values="person" model_index="5" background="green" /><Label value="left_elbow" predicted_values="person" model_index="7" background="green" /><Label value="left_wrist" predicted_values="person" model_index="9" background="green" /><Label value="right_shoulder" predicted_values="person" model_index="6" background="blue" /><Label value="right_elbow" predicted_values="person" model_index="8" background="blue" /><Label value="right_wrist" predicted_values="person" model_index="10" background="blue" /></View><View><Label value="left_hip" predicted_values="person" model_index="11" background="brown" /><Label value="left_knee" predicted_values="person" model_index="13" background="brown" /><Label value="left_ankle" predicted_values="person" model_index="15" background="brown" /><Label value="right_hip" predicted_values="person" model_index="12" background="orange" /><Label value="right_knee" predicted_values="person" model_index="14" background="orange" /><Label value="right_ankle" predicted_values="person" model_index="16" background="orange" /></View></KeyPointLabels><Image name="image" value="$image" />
</View>

展示结果:
在这里插入图片描述

5.视频帧检测 video detect

标签

<View><Video name="video" value="$video"/><VideoRectangle name="box" toName="video" model_tracker="botsort" model_conf="0.25" model_iou="0.7" /><Labels name="label" toName="video"><Label value="Person" background="red"/><Label value="Car" background="blue"/></Labels>
</View>

第一次处理视频会比较长,因为他是完整的预测完才加载;后台可以显示当前处理到多少frame
在这里插入图片描述
展示效果如下:
在这里插入图片描述

6.视频帧分类 video classify

标签:

<View><Video name="video" value="$video"/><TimelineLabels name="label" toName="video" model_trainable="false" model_score_threshold="0.25"><Label value="Ball" predicted_values="soccer_ball" /><Label value="hamster" /></TimelineLabels>
</View>

测试失败
在这里插入图片描述

7.旋转目标检测 obb detect

测试失败

8.替换yolo11模型

下载好然后放到models目录下
在这里插入图片描述
修改
\label-studio-ml-backend\label-studio-ml-backend-master\label_studio_ml\examples\yolo\requirements.txt
把ultralytics更新为
ultralytics~=8.3.20
否则不支持yolo11,

重启docker

docker-compose down
docker-compose up --build

就可以了
记得替换标签时,加入model_path=“yolo11n.pt”
例如目标检测:

<View><Image name="image" value="$image"/><PolygonLabels name="label" toName="image" model_score_threshold="0.25" opacity="0.1" model_path="yolo11n.pt"><Label value="Car" background="blue"/><Label value="Person" background="red"/></PolygonLabels>
</View>

在这里插入图片描述

实测下来,
yolo11n.pt
yolo11n-seg.pt
yolo11n-pose.pt
yolo11n-cls.pt
都能用

给我点个赞吧,谢谢了

附录coco80类名称

为了方便大家修改标签信息,我附上coco数据集80类名称,自行参考:

person(人)
bicycle(自行车)
car(轿车)
motorcycle(摩托车)
airplane(飞机)
bus(公共汽车)
train(火车)
truck(卡车)
boat(船)
traffic light(交通灯)
fire hydrant(消防栓)
stop sign(停车标志)
parking meter(停车收费表)
bench(长凳)
bird(鸟)
cat(猫)
dog(狗)
horse(马)
sheep(羊)
cow(牛)
elephant(大象)
bear(熊)
zebra(斑马)
giraffe(长颈鹿)
backpack(背包)
umbrella(雨伞)
handbag(手提包)
tie(领带)
suitcase(手提箱)
frisbee(飞盘)
skis(滑雪板)
snowboard(滑雪单板)
sports ball(体育用球)
kite(风筝)
baseball bat(棒球棒)
baseball glove(棒球手套)
skateboard(滑板)
surfboard(冲浪板)
tennis racket(网球拍)
bottle(瓶子)
wine glass(酒杯)
cup(杯子)
fork(叉子)
knife(刀)
spoon(勺子)
bowl(碗)
banana(香蕉)
apple(苹果)
sandwich(三明治)
orange(橙子)
broccoli(西兰花)
carrot(胡萝卜)
hot dog(热狗)
pizza(披萨)
donut(甜甜圈)
cake(蛋糕)
chair(椅子)
couch(长沙发)
potted plant(盆栽)
bed(床)
dining table(餐桌)
toilet(马桶)
tv(电视)
laptop(笔记本电脑)
mouse(鼠标)
remote(遥控器)
keyboard(键盘)
cell phone(手机)
microwave(微波炉)
oven(烤箱)
toaster(烤面包机)
sink(水槽)
refrigerator(冰箱)
book(书)
clock(时钟)
vase(花瓶)
scissors(剪刀)
teddy bear(泰迪熊)
hair drier(吹风机)
toothbrush(牙刷)
http://www.tj-hxxt.cn/news/100331.html

相关文章:

  • 厦门专业网站设计代理百度收录入口提交
  • 视频网站怎么建设ebay欧洲站网址
  • 网站建设及维护机搜索引擎营销就是seo
  • 网站建设公司怎么找客户外贸推广方式都有哪些
  • 注册深圳公司代理记账报税宁波seo公司排名
  • 手机网站的尺寸做多大的网络营销官网
  • 怎么查看网站ftp地址推广策划方案怎么写
  • 厦门做网站找谁品牌传播方案
  • 张家口网站建设产品如何做市场推广
  • 顺德网站制作软文代写是什么
  • 重庆网站建设慕枫营销软文范文200字
  • 连云港公司网站制作怎样建网站平台
  • 西安品牌网站建设梅州网络推广
  • wordpress过滤器插件6seo研究协会
  • 网站如何上传怎么做微信推广和宣传
  • 代做动画毕业设计的网站正规的计算机培训机构
  • 酒泉网站建设网页设计个人主页模板
  • 延吉网站建设彩票360网址大全
  • 怎么做自己的网站免费优化排名seo
  • 做站群的网站要备案吗百度如何免费打广告
  • 西安建站平台云建站
  • 交易平台网站建设策划书附近电脑培训班位置
  • 长春做网站选长春万网郑州网络营销哪家正规
  • 做弹幕网站营销培训方案
  • 重庆皇华建设集团有限公司网站站长统计幸福宝2022年排行榜
  • 免费视频素材下载的网站品牌推广文案
  • 外省公司做网站备案大侠seo外链自动群发工具
  • 深圳网站制作有名 乐云践新google全球推广
  • 男女做那个网站友情链接怎么购买
  • 校园二手交易网站要怎么做呀关键词优化seo